Glutamatergic synapses in early postnatal development transiently express calcium-permeable AMPA receptors (CP-AMPARs). Although these GluA2-lacking receptors are essential and are elevated in response to brain-derived neurotrophic factor (BDNF), little is known regarding molecular mechanisms that govern their expression and synaptic insertion. Here we show that BDNF-induced GluA1 translation in rat primary hippocampal neurons requires the activation of mammalian target of rapamycin (mTOR) via calcium calmodulin-dependent protein kinase kinase (CaMKK).
View Article and Find Full Text PDFCa²⁺/calmodulin-dependent kinases (CaMKs) are essential for neuronal development and plasticity, processes requiring de novo protein synthesis. Roles for CaMKs in modulating gene transcription are well established, but their involvement in mRNA translation is evolving. Here we report that activity-dependent translational initiation in cultured rat hippocampal neurons is enhanced by CaMKI-mediated phosphorylation of Ser1156 in eukaryotic initiation factor eIF4GII (4GII).
View Article and Find Full Text PDFNeurons are highly polarized cells that have structurally distinct processes-the axons and dendrites-that differentiate from common immature neurites. In cultured hippocampal neurons, one of these immature neurites stochastically initiates rapid extension and becomes an axon, whereas the others become dendrites. Various extracellular and intracellular signals contribute to axon specification; however, the specific intracellular pathways whereby particular extracellular stimuli lead to axon specification remain to be delineated.
View Article and Find Full Text PDFThe majority of excitatory synaptic input in the brain is received by small bulbous actin-rich protrusions residing on the dendrites of glutamatergic neurons. These dendritic spines are the major sites of information processing in the brain. This conclusion is reinforced by the observation that many higher cognitive disorders, such as mental retardation, Rett syndrome, and autism, are associated with aberrant spine morphology.
View Article and Find Full Text PDFA change in intracellular free calcium is a common signaling mechanism that modulates a wide array of physiological processes in most cells. Responses to increased intracellular Ca(2+) are often mediated by the ubiquitous protein calmodulin (CaM) that upon binding Ca(2+) can interact with and alter the functionality of numerous proteins including a family of protein kinases referred to as CaM-kinases (CaMKs). Of particular interest are multifunctional CaMKs, such as CaMKI, CaMKII, CaMKIV and CaMKK, that can phosphorylate multiple downstream targets.
View Article and Find Full Text PDFMedulloblastoma is a highly prevalent pediatric central nervous system malignancy originating in the cerebellum, with a strong propensity for metastatic migration to the leptomeninges, which greatly increases mortality. While numerous investigations are focused on the molecular mechanisms of medulloblastoma histogenesis, the signaling pathways regulating migration are still poorly understood. Medulloblastoma likely arises from aberrant proliferative signaling in cerebellar granule precursor cells during development, and estrogen is a morphogen that promotes medulloblastoma cell migration.
View Article and Find Full Text PDFIt is well established that long-term potentiation (LTP), a paradigm for learning and memory, results in a stable enlargement of potentiated spines associated with recruitment of additional GluA1-containing AMPA receptors (AMPARs). Although regulation of the actin cytoskeleton is involved, the detailed signaling mechanisms responsible for this spine expansion are unclear. Here, we used cultured mature hippocampal neurons stimulated with a glycine-induced, synapse-specific form of chemical LTP (GI-LTP).
View Article and Find Full Text PDFCurr Opin Neurobiol
February 2010
Formation of the human brain during embryonic and postnatal development is an extraordinarily complex process resulting at maturity in billions of neurons with trillions of specialized connections called synapses. These synapses, composed of a varicosity or bouton from a presynaptic neuron that communicates with a dendritic spine of the postsynaptic neuron, comprise the neural network that is essential for complex behavioral phenomena and cognition. Inappropriate synapse formation or structure is thought to underlie several developmental neuropathologies.
View Article and Find Full Text PDFActivity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synaptic plasticity remain largely uncharacterized. We show here that the CREB- and activity-regulated microRNA, miR132, is induced during periods of active synaptogenesis.
View Article and Find Full Text PDFFunctionality of neurons is dependent on their compartmentalized polarization of dendrites and an axon. The rapid and selective outgrowth of one neurite, relative to the others, to form the axon is critical in initiating neuronal polarity. Axonogenesis is regulated in part by an optimal intracellular calcium concentration.
View Article and Find Full Text PDFIn the nervous system, many intracellular responses to elevated calcium are mediated by CaM kinases (CaMKs), a family of protein kinases whose activities are initially modulated by binding Ca(2+)/calmodulin and subsequently by protein phosphorylation. One member of this family, CaMKII, is well-established for its effects on modulating synaptic plasticity and learning and memory. However, recent studies indicate that some actions on neuronal development and function attributed to CaMKII may instead or in addition be mediated by other members of the CaMK cascade, such as CaMKK, CaMKI, and CaMKIV.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2008
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synapse growth and plasticity remain largely uncharacterized. Here, we show that microRNA 132 (miR132) is an activity-dependent rapid response gene regulated by the cAMP response element-binding (CREB) protein pathway.
View Article and Find Full Text PDFCa(2+)-permeable AMPA receptors (CP-AMPARs) at central glutamatergic synapses are of special interest because of their unique biophysical and signaling properties that contribute to synaptic plasticity and their roles in multiple neuropathologies. However, intracellular signaling pathways that recruit synaptic CP-AMPARs are unknown, and involvement of CP-AMPARs in hippocampal region CA1 synaptic plasticity is controversial. Here, we report that intracellular infusion of active CaM-kinase I (CaMKI) into cultured hippocampal neurons enhances miniature EPSC amplitude because of recruitment of CP-AMPARs, likely from an extrasynaptic pool.
View Article and Find Full Text PDFNeuronal activity augments maturation of mushroom-shaped spines to form excitatory synapses, thereby strengthening synaptic transmission. We have delineated a Ca(2+)-signaling pathway downstream of the NMDA receptor that stimulates calmodulin-dependent kinase kinase (CaMKK) and CaMKI to promote formation of spines and synapses in hippocampal neurons. CaMKK and CaMKI form a multiprotein signaling complex with the guanine nucleotide exchange factor (GEF) betaPIX and GIT1 that is localized in spines.
View Article and Find Full Text PDFActivity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis.
View Article and Find Full Text PDFMembers of the Wnt signaling family are important mediators of numerous developmental events, including activity-dependent dendrite development, but the pathways regulating expression and secretion of Wnt in response to neuronal activity are poorly defined. Here, we identify an NMDA receptor-mediated, Ca2+-dependent signaling pathway that couples neuronal activity to dendritic arborization through enhanced Wnt synthesis and secretion. Activity-dependent dendritic outgrowth and branching in cultured hippocampal neurons and slices is mediated through activation by CaM-dependent protein kinase kinase (CaMKK) of the membrane-associated gamma isoform of CaMKI.
View Article and Find Full Text PDFEnhancement of synaptic transmission, as occurs in long-term potentiation (LTP), can result from several mechanisms that are regulated by phosphorylation of the AMPA-type glutamate receptor (AMPAR). Using a quantitative assay of net serine 845 (Ser-845) phosphorylation in the GluR1 subunit of AMPARs, we investigated the relationship between phospho-Ser-845, GluR1 surface expression, and synaptic strength in hippocampal neurons. About 15% of surface AMPARs in cultured neurons were phosphorylated at Ser-845 basally, whereas chemical potentiation (forskolin/rolipram treatment) persistently increased this to 60% and chemical depression (N-methyl-D-aspartate treatment) decreased it to 10%.
View Article and Find Full Text PDFInduction of hippocampal long-term potentiation (LTP) requires activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), whereas maintenance of LTP additionally requires protein synthesis. We recently reported that CaMKII stimulates protein synthesis in depolarized hippocampal neurons through phosphorylation of the mRNA translation factor cytoplasmic polyadenylation element-binding protein (CPEB), and this phosphorylation is rapidly reversed by protein phosphatase 1 (PP1). Protein synthesis-dependent late-phase LTP (L-LTP) in the hippocampus requires calcium influx through the NMDA-type glutamate receptor (NMDA-R) to activate CaMKII as well as concomitant inhibition of PP1 mediated by protein kinase A.
View Article and Find Full Text PDFIntracellular Ca2+ and protein phosphorylation play pivotal roles in long-term potentiation (LTP), a cellular model of learning and memory. Ca2+ regulates multiple intracellular pathways, including the calmodulin-dependent kinases (CaMKs) and the ERKs (extracellular signal-regulated kinases), both of which are required for LTP. However, the mechanism by which Ca2+ activates ERK during LTP remains unknown.
View Article and Find Full Text PDFIntracellular calcium concentrations regulate diverse cellular events including cytoskeletal dynamics, gene transcription, and synaptic plasticity. The calcium signal is transduced in part by the calcium/calmodulin-dependent protein kinase (CaMK) cascade that is comprised of CaMK kinase (CaMKK) and its primary downstream substrates, CaMKI and CaMKIV. The CaMK cascade also participates in cross-talk with other signaling pathways: CaMKK/CaMKI can activate the mitogen-activated protein kinase pathway and cAMP-dependent protein kinase (PKA) can directly phosphorylate two inhibitory sites (Thr108 and Ser458) in CaMKK.
View Article and Find Full Text PDFPhosphorylation of cytoplasmic polyadenylation element binding protein (CPEB) regulates protein synthesis in hippocampal dendrites. CPEB binds the 3' untranslated region (UTR) of cytoplasmic mRNAs and, when phosphorylated, initiates mRNA polyadenylation and translation. We report that, of the protein kinases activated in the hippocampus during synaptic plasticity, calcium/calmodulin-dependent protein kinase II (CaMKII) robustly phosphorylated the regulatory site (threonine 171) in CPEB in vitro.
View Article and Find Full Text PDFElevated intracellular Ca(2+) triggers numerous signaling pathways including protein kinases such as the calmodulin-dependent kinases (CaMKs) and the extracellular signal-regulated kinases (ERKs). In the present study we examined Ca(2+)-dependent "cross-talk" between these two protein kinase families. Using a combination of pharmacological inhibitors and dominant-negative kinases (dnKinase), we identified a requirement for CaMKK acting through CaMKI in the stimulation of ERKs upon depolarization of the neuroblastoma cell line, NG108.
View Article and Find Full Text PDFCalcium and calmodulin (CaM) are important signaling molecules that regulate axonal or dendritic extension and branching. The Ca2+-dependent stimulation of neurite elongation has generally been assumed to be mediated by CaM-kinase II (CaMKII), although other members of the CaMK family are highly expressed in developing neurons. We have examined this assumption using a combination of dominant-negative CaMKs (dnCaMKs) and other specific CaMK inhibitors.
View Article and Find Full Text PDFActivity-regulated transcription has been implicated in adaptive plasticity in the CNS. In many instances, this plasticity depends upon the transcription factor CREB. Precisely how neuronal activity regulates CREB remains unclear.
View Article and Find Full Text PDFIn the current study, we show that bone morphogenetic proteins (BMPs) play a role in hematopoiesis that is independent of their function in specifying ventral mesodermal fate. When BMP activity is upregulated or inhibited in Xenopus embryos hematopoietic precursors are specified properly but few mature erythrocytes are generated. Distinct cellular defects underlie this loss of erythrocytes: inhibition of BMP activity induces erythroid precursors to undergo apoptotic cell death, whereas constitutive activation of BMPs causes an increase in commitment of hematopoietic progenitors to myeloid differentiation and a concomitant decrease in erythrocytes that is not due to enhanced apoptosis.
View Article and Find Full Text PDF