Publications by authors named "Soderling S"

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.

View Article and Find Full Text PDF

Epilepsy Aphasia Syndrome (EAS) is a spectrum of childhood disorders that exhibit complex co-morbidities that include epilepsy and the emergence of cognitive and language disorders. CNKSR2 is an X-linked gene in which mutations are linked to EAS. We previously demonstrated Cnksr2 knockout (KO) mice model key phenotypes of EAS analogous to those present in clinical patients with mutations in the gene.

View Article and Find Full Text PDF

Astrocytes, a major glial cell type of the brain, regulate synapse numbers and function. However, whether astrocyte dysfunction can cause synaptic pathologies in neurological disorders such as Parkinson's Disease (PD) is unknown. Here, we investigated the impact of the most common PD-linked mutation in the leucine-rich repeat kinase 2 () gene (G2019S) on the synaptic functions of astrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the genetic factors behind autism spectrum disorder by focusing on specific risk genes and their interactions within protein complexes in the mouse brain.
  • Researchers developed a method to examine the spatial proteomes of these genes, identifying interactions that connect high-risk genes with less-known ones, which may help in prioritizing genetic risks.
  • By using spatial proteomics and CRISPR technology, the study demonstrates functional interactions that regulate gene expression, shedding light on cellular mechanisms involved in autism and offering new pathways for research and potential treatments.
View Article and Find Full Text PDF

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been trained to design binding proteins via three-dimensional structures of target proteins, but as a result, struggle to design binders to disordered or conformationally unstable targets. In this work, we provide a generalizable algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein.

View Article and Find Full Text PDF

One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Rac1 is a key intracellular signal transducer that influences actin remodeling and is linked to working memory and learning.
  • Rac1 inhibition at presynaptic terminals disrupts spatial working memory, while inhibition at postsynaptic sites affects longer-term cognitive processes.
  • The study identifies specific proteins involved in presynaptic Rac1 signaling that may regulate synaptic vesicle behavior and morphology, shedding light on its role in cognitive functions.
View Article and Find Full Text PDF

Primary cilia are conserved sensory hubs essential for signaling transduction and embryonic development. Ciliary dysfunction causes a variety of developmental syndromes with neurological features and cognitive impairment, whose basis mostly remains unknown. Despite connections to neural function, the primary cilium remains an overlooked organelle in the brain.

View Article and Find Full Text PDF
Article Synopsis
  • Synaptogenesis plays a vital role in developing neural circuits, but its impact on goal-directed behaviors was previously unclear.
  • Research on mice reveals that operant conditioning leads to the creation of excitatory synapses in a specific brain region involved in movement control, influenced by a key neuronal protein called α2δ-1.
  • Eliminating α2δ-1 in adult mice's anterior cingulate cortex didn't affect their learning ability but significantly increased their effort to obtain rewards, demonstrating the importance of synapse formation in regulating how much effort animals are willing to exert.
View Article and Find Full Text PDF

Background: The ability to correctly associate cues and contexts with threat is critical for survival, and the inability to do so can result in threat-related disorders such as posttraumatic stress disorder. The prefrontal cortex (PFC) and hippocampus are well known to play critical roles in cued and contextual threat memory processing. However, the circuits that mediate prefrontal-hippocampal modulation of context discrimination during cued threat processing are less understood.

View Article and Find Full Text PDF

Epilepsy Aphasia Syndromes (EAS) are a spectrum of childhood epileptic, cognitive, and language disorders of unknown etiology. is a strong X-linked candidate gene implicated in EAS; however, there have been no studies of genetic models to dissect how its absence may lead to EAS. Here we develop a novel KO mouse line and show that male mice exhibit increased neural activity and have spontaneous electrographic seizures.

View Article and Find Full Text PDF

In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal signaling to presynaptic plasticity remain controversial and poorly understood. To identify and evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic cytomatrix using in vivo biotin identification (iBioID). The resultant proteome was heavily enriched for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3 complex to nucleate branched actin filaments.

View Article and Find Full Text PDF

The astrocyte is a central glial cell and plays a critical role in the architecture and activity of neuronal circuits and brain functions through forming a tripartite synapse with neurons. Emerging evidence suggests that dysfunction of tripartite synaptic connections contributes to a variety of psychiatric and neurodevelopmental disorders. Furthermore, recent advancements with transcriptome profiling, cell biological and physiological approaches have provided new insights into the molecular mechanisms into how astrocytes control synaptogenesis in the brain.

View Article and Find Full Text PDF
Article Synopsis
  • Research shows that a mutation in the SWIP subunit of the WASH complex is linked to human intellectual disability and affects endosomal functions in brain cells.
  • A mouse model with this mutation reveals that it destabilizes the WASH complex, leading to disruptions in the endosomal and lysosomal pathways and indicators of neurodegeneration.
  • The study finds that SWIP mutations not only impair cognitive functions but also cause progressive motor deficits, which are also observed in affected humans, highlighting the critical role of endo-lysosomal processes in these impairments.
View Article and Find Full Text PDF

Technologies to reprogram cell-type specification have revolutionized the fields of regenerative medicine and disease modeling. Currently, the selection of fate-determining factors for cell reprogramming applications is typically a laborious and low-throughput process. Therefore, we use high-throughput pooled CRISPR activation (CRISPRa) screens to systematically map human neuronal cell fate regulators.

View Article and Find Full Text PDF

Perisynaptic astrocytic processes are an integral part of central nervous system synapses; however, the molecular mechanisms that govern astrocyte-synapse adhesions and how astrocyte contacts control synapse formation and function are largely unknown. Here we use an in vivo chemico-genetic approach that applies a cell-surface fragment complementation strategy, Split-TurboID, and identify a proteome that is enriched at astrocyte-neuron junctions in vivo, which includes neuronal cell adhesion molecule (NRCAM). We find that NRCAM is expressed in cortical astrocytes, localizes to perisynaptic contacts and is required to restrict neuropil infiltration by astrocytic processes.

View Article and Find Full Text PDF

Psychiatric disorders are highly heritable pathologies of altered neural circuit functioning. How genetic mutations lead to specific neural circuit abnormalities underlying behavioral disruptions, however, remains unclear. Using circuit-selective transgenic tools and a mouse model of maladaptive social behavior (ArpC3 mutant), we identify a neural circuit mechanism driving dysfunctional social behavior.

View Article and Find Full Text PDF

Human mutations in the dystroglycan complex (DGC) result in not only muscular dystrophy but also cognitive impairments. However, the molecular architecture critical for the synaptic organization of the DGC in neurons remains elusive. Here, we report Inhibitory Synaptic protein 1 (InSyn1) is a critical component of the DGC whose loss alters the composition of the GABAergic synapses, excitatory/inhibitory balance in vitro and in vivo, and cognitive behavior.

View Article and Find Full Text PDF

Analysis of endogenous protein localization, function, and dynamics is fundamental to the study of all cells, including the diversity of cell types in the brain. However, current approaches are often low throughput and resource intensive. Here, we describe a CRISPR-Cas9-based homology-independent universal genome engineering (HiUGE) method for endogenous protein manipulation that is straightforward, scalable, and highly flexible in terms of genomic target and application.

View Article and Find Full Text PDF

Two anatomically and functionally distinct types of synapses are present in the central nervous system, excitatory synapses, and inhibitory synapses. Purification and analysis of the protein complex at the excitatory postsynapses have led to fundamental insights into neurobiology. In contrast, the biochemical purification and analysis of the inhibitory postsynaptic density have been largely intractable.

View Article and Find Full Text PDF

Intercellular contacts are essential for precise organ morphogenesis, function, and maintenance; however, spatiotemporal information of cell-cell contacts or adhesions remains elusive in many systems. We developed a genetically encoded fluorescent indicator for intercellular contacts with optimized intercellular GFP reconstitution using glycosylphosphatidylinositol (GPI) anchor, GRAPHIC (GPI anchored reconstitution-activated proteins highlight intercellular connections), which can be used for an expanded number of cell types. We observed a robust GFP signal specifically at the interface between cultured cells, without disrupting natural cell contact.

View Article and Find Full Text PDF

Excitatory synapse formation during development involves the complex orchestration of both structural and functional alterations at the postsynapse. However, the molecular mechanisms that underlie excitatory synaptogenesis are only partially resolved, in part because the internal machinery of developing synapses is largely unknown. To address this, we apply a chemicogenetic approach, in vivo biotin identification (iBioID), to discover aspects of the proteome of nascent synapses.

View Article and Find Full Text PDF

NMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear.

View Article and Find Full Text PDF

Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP-α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown.

View Article and Find Full Text PDF

Dendritic spines are actin-rich, postsynaptic protrusions that contact presynaptic terminals to form excitatory chemical synapses. These synaptic contacts are widely believed to be the sites of memory formation and information storage, and changes in spine shape are thought to underlie several forms of learning-related plasticity. Both membrane trafficking pathways and the actin cytoskeleton drive activity-dependent structural and functional changes in dendritic spines.

View Article and Find Full Text PDF