The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells.
View Article and Find Full Text PDFPurpose: This study determined whether the Crataegus (Hawthorn species) special extract WS 1442 stimulates the endothelial formation of nitric oxide (NO), a vasoprotective factor, and characterized the underlying mechanism.
Methods And Results: Vascular reactivity was assessed in porcine coronary artery rings, reactive oxygen species (ROS) formation in artery sections by microscopy, and phosphorylation of Akt and endothelial NO synthase (eNOS) in endothelial cells by Western blot analysis. WS 1442 caused endothelium-dependent relaxations in coronary artery rings, which were reduced by N-nitro-L-arginine (a competitive inhibitor of NO synthase) and by charybdotoxin plus apamin (two inhibitors of endothelium-derived hyperpolarizing factor-mediated responses).
Background/aims: Drinking red wine is associated with a decreased mortality from coronary heart diseases. This study examined whether polyphenols contained in a grape skin extract (GSE) triggered the endothelial formation of nitric oxide (NO) and investigated the underlying mechanism.
Methods: Vascular reactivity was assessed in organ chambers using porcine coronary artery rings in the presence of indomethacin (a cyclooxygenase inhibitor) and charybdotoxin plus apamin (inhibitors of endothelium-derived hyperpolarizing factor-mediated responses).
An alcohol-free grape-skin extract (GSE) obtained from skins of Vitis labrusca has significant anti-hypertensive, antioxidant and vasodilator effects. According to our previous results, the vasodilator effect of GSE in the isolated mesenteric vascular bed (MVB) of the rat is dependent on endothelium and partially dependent on nitric oxide (NO). In the MVB of the rat pre-contracted with norepinephrine (NE), bolus injections of GSE induced a long-lasting dose-dependent vasodilation that is significantly reduced after the treatment with 1H-[1,2,3] oxadiazolo [4,4-a] quinoxalin-1-one (ODQ).
View Article and Find Full Text PDFThe possible involvement of the endothelium in the vasodilator action of eugenol was investigated in the mesenteric vascular bed (MVB) of the rat. Bolus injections of eugenol (0.2, 2 and 20 micromol) and acetylcholine (ACh; 10, 30 and 100 pmol) induced dose-dependent vasodilator responses in noradrenaline-precontracted beds that were partially inhibited by pretreatment of the MVB with deoxycholate (1 mg mL(-1)) to remove the endothelium (approximately 14% and approximately 30% of the control response remaining at the lowest doses of ACh and eugenol, respectively).
View Article and Find Full Text PDF