Bevacizumab is a monoclonal antibody (mAb) that prevents the growth of new blood vessels and is currently employed in the treatment of colorectal cancer (CRC). However, like other mAb, bevacizumab shows a limited penetration in the tumors, hampering their effectiveness and inducing adverse reactions. The aim of this work was to design and evaluate albumin-based nanoparticles, coated with dextran, as carriers for bevacizumab in order to promote its accumulation in the tumor and, thus, improve its antiangiogenic activity.
View Article and Find Full Text PDFMacrophages play a pivotal role as host cells for parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype.
View Article and Find Full Text PDFThe oral administration of therapeutic proteins copes with important challenges (mainly degradation and poor absorption) making their potential therapeutic application extremely difficult. The aim of this study was to design and evaluate the potential of the combination between mucus-permeating nanoparticles and permeation enhancers as a carrier for the oral delivery of the monoclonal antibody bevacizumab, used as a model of therapeutic protein. For this purpose, bevacizumab was encapsulated in PEG-coated albumin nanoparticles as a hydrophobic ion-pairing complex with either sodium deoxycholate (DS) or sodium docusate (DOCU).
View Article and Find Full Text PDFNowadays, leishmaniasis is still treated with outdated drugs that present several obstacles related to their high toxicity, long duration, parenteral administration, high costs and drug resistance. Therefore, there is an urgent demand for safer and more effective novel drugs. Previous studies indicated that selenium compounds are promising derivatives for innovative therapy in leishmaniasis treatment.
View Article and Find Full Text PDFThe norbornene scaffold has arisen as a promising structure in medicinal chemistry due to its possible therapeutic application in cancer treatment. The development of norbornene-based derivatives as potential chemotherapeutic agents is attracting significant attention. Here, we report an unprecedented review on the recent advances of investigations into the antitumoral efficacy of different compounds, including the abovementioned bicyclic scaffold in their structure, in combination with chemotherapeutic agents or forming metal complexes.
View Article and Find Full Text PDFThe lack of safe and cost-effective treatments against leishmaniasis highlights the urgent need to develop improved leishmanicidal agents. Antimicrobial peptides (AMPs) are an emerging category of therapeutics exerting a wide range of biological activities such as anti-bacterial, anti-fungal, anti-parasitic and anti-tumoral. In the present study, the approach of repurposing AMPs as antileishmanial drugs was applied.
View Article and Find Full Text PDFJ Antimicrob Chemother
March 2022
Objectives: More effective topical treatments remain an unmet need for the localized forms of cutaneous leishmaniasis (CL). The aim of this study was to evaluate the efficacy and safety of a topical berberine cream in BALB/c mice infected with Leishmania major parasites.
Methods: A cream containing 0.
Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solubility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-β-CD or methoxy-PEG (m-PEG) to the polymer backbone of Gantrez™ AN, were synthetized and characterized.
View Article and Find Full Text PDFLeishmaniasis urgently needs new oral treatments, as it is one of the most important neglected tropical diseases that affects people with poor resources. The drug discovery pipeline for oral administration currently discards entities with poor aqueous solubility and permeability (class IV compounds in the Biopharmaceutical Classification System, BCS) such as the diselenide , a trypanothione reductase (TR) inhibitor. This work was assisted by glyceryl palmitostearate and diethylene glycol monoethyl ether-based nanostructured lipid carriers (NLC) to render bioavailable and effective after its oral administration.
View Article and Find Full Text PDFThis study investigates if visceral leishmaniasis (VL) infection has some effects on the organ and cellular uptake and distribution of 100-200 nm near-infrared fluorescently labelled non-biodegradable polystyrene latex beads (PS NPs) or biodegradable polylactic--glycolic nanoparticles (PLGA NPs), as this parasitic infection produces morphological alterations in liver, spleen and bone marrow, organs highly involved in NP sequestration. The results showed that the magnitude of the effect was specific for each organ and type of NP. With the exception of the liver, the general trend was a decrease in NP organ and cellular uptake, mostly due to immune cell mobilization and/or weight organ gain, as vascular permeability was increased.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2021
This work reports the synthesis and characterization by Fourier transform infrared spectroscopy (FTIR), H, C, and Se nuclear magnetic resonance (NMR), mass spectrometry, and elemental analysis techniques as well as the evaluation of the leishmanicidal activity of 13 new selenophosphoramidate derivatives. Among the new compounds, four of them (compounds 1f, 1g, 2f, and 2g), which exhibited the best profiles, were tested against infected macrophages and were selected for further studies related to their leishmanicidal mechanism. In this regard, trypanothione redox system alteration was determined.
View Article and Find Full Text PDFChagas disease is usually caused by tropical infection with the insect-transmitted protozoan . Currently, Chagas disease is a major public health concern worldwide due to globalization, and there are no treatments neither vaccines because of the long-term nature of the disease and its complex pathology. Current treatments are limited to two obsolete drugs, benznidazole and nifurtimox, which lead to serious drawbacks.
View Article and Find Full Text PDFBreast cancer is a multifactor disease, and many drug combination therapies are applied for its treatment. Selenium derivatives represent a promising potential anti-breast cancer treatment. This study reports the cytotoxic activity of forty-one amides and phosphoramidates containing selenium against five cancer cell lines (MCF-7, CCRF-CEM, HT-29, HTB-54 and PC-3) and two nonmalignant cell lines (184B5 and BEAS-2B).
View Article and Find Full Text PDFChagas disease is a tropical infection caused by the protozoan parasite and a global public health concern. It is a paradigmatic example of a chronic disease without an effective treatment. Current treatments targeting are limited to two obsolete nitroheterocyclic drugs, benznidazole and nifurtimox, which lead to serious drawbacks.
View Article and Find Full Text PDFCompounds 1 and 2 (selenocyanate and diselenide derivatives, respectively) were evaluated for their potential use in vivo against visceral leishmaniasis (VL). Both entities showed low cytoxicity in vitro in Vero and Caco-2 cell lines. However, the compounds were not suitable for their oral administration, since they exhibited poor values of intestinal permeability in vitro.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2020
Two new series of 28 selenocyanate and diselenide derivatives containing amide moieties were designed, synthesized, and evaluated for their leishmanicidal activity against axenic amastigotes, and selectivity was assessed in human THP-1 cells. Eleven compounds exhibited excellent leishmanicidal activity with EC values lower than the reference drug miltefosine (EC = 2.84 μM).
View Article and Find Full Text PDFBerberine (BER)-an anti-inflammatory quaternary isoquinoline alkaloid extracted from plants-has been reported to have a variety of biologic properties, including antileishmanial activity. This work addresses the preparation of BER-loaded liposomes with the aim to prevent its rapid liver metabolism and improve the drug selective delivery to the infected organs in visceral leishmaniasis (VL). BER liposomes (LP-BER) displayed a mean size of 120 nm, negative Z-potential of -38 mV and loaded 6 nmol/μmol lipid.
View Article and Find Full Text PDFA series of thirty-one selenocompounds covering a wide chemical space was assessed for in vitro leishmanicidal activities against Leishmania infantum amastigotes. The cytotoxicity of those compounds was also evaluated on human THP-1 cells. Interestingly most tested derivatives were active in the low micromolar range and seven of them (A.
View Article and Find Full Text PDFWe report for the first time a novel series of tellurides bearing sulfonamide as selective and potent inhibitors of the β-class carbonic anhydrase (CA; EC 4.2.1.
View Article and Find Full Text PDFThe oral administration of dapsone (DAP) for the treatment of cutaneous leishmaniasis (CL) is effective, although serious hematological side effects limit its use. In this study, we evaluated this drug for the topical treatment of CL. As efficacy depends on potency and skin penetration, we first determined its antileishmanial activity (IC = 100 μM) and selectivity index in vitro against -infected macrophages.
View Article and Find Full Text PDFThe oral delivery of docetaxel (DTX) is challenging due to a low bioavailability, related to an important pre-systemic metabolism. With the aim of improving the bioavailability of this cytotoxic agent, nanoparticles from conjugates based on the copolymer of methyl vinyl ether and maleic anhydride (poly(anhydride)) and two different types of PEG, PEG2000 (PEG2) or methoxyPEG2000 (mPEG2), were evaluated. Nanoparticles, with a DTX loading close to 10%, were prepared by desolvation and stabilized with calcium, before purification and lyophilization.
View Article and Find Full Text PDFA novel series of thirty-one N-substituted urea, thiourea, and selenourea derivatives containing diphenyldiselenide entities were synthesized, fully characterized by spectroscopic and analytical methods, and screened for their leishmanicidal activities. The cytotoxic activity of these derivatives was tested against axenic amastigotes, and selectivity was assessed in human THP-1 cells. Thirteen of the synthesized compounds showed a significant antileishmanial activity, with 50% effective concentration (EC) values lower than that for the reference drug miltefosine (EC, 2.
View Article and Find Full Text PDFBackground: Cutaneous leishmaniasis (CL) skin lesions are the result of a deregulated immune response, which is unable to eliminate Leishmania parasites. The control of both, parasites and host immune response, is critical to prevent tissue destruction. The skin ulceration has been correlated with high TNF-α level.
View Article and Find Full Text PDFThe aim of this work was to investigate the potential of pegylated poly(anhydride) nanoparticles to enhance the oral bioavailability of docetaxel (DTX). Nanoparticles were prepared after the incubation between the copolymer of methyl vinyl ether and maleic anhydride (Gantrez® AN), poly(ethylene glycol) (PEG2000 or PEG6000) and docetaxel (DTX). The oral administration of a single dose of pegylated nanoparticles to mice provided sustained and prolonged therapeutic plasma levels of docetaxel for up 48-72 h.
View Article and Find Full Text PDFVaccine delivery using microneedles (MNs) represents a safe, easily disposable and painless alternative to traditional needle immunizations. The MN delivery of DNA vaccines to the dermis may result in a superior immune response and/or an equivalent immune response at a lower vaccine dose (dose-sparing). This could be of special interest for immunization programs against neglected tropical diseases such as leishmaniasis.
View Article and Find Full Text PDF