Publications by authors named "Sobrido-Camean D"

Article Synopsis
  • Lampreys can naturally regain their swimming ability after a complete spinal cord injury (SCI) due to the regeneration of their descending axons, a process that hasn’t been thoroughly studied in smaller axon populations often found in mammals.
  • Research focused on cholecystokinin (CCK), a neuropeptide that influences several functions, has shown that in larval lampreys, CCKergic axons can partially regenerate, recovering about 81% of the original axonal profiles within 10 weeks post-injury.
  • The study found that improved swimming performance in injured lampreys correlates with the resurgence of CCKergic axons, suggesting these neuropeptidergic systems play a significant role in recovery of locom
View Article and Find Full Text PDF

The study of neurogenesis is essential to understanding fundamental developmental processes and for the development of cell replacement therapies for central nervous system disorders. Here, we designed an in vivo drug screening protocol in developing zebrafish to find new molecules and signalling pathways regulating neurogenesis in the ventral spinal cord. This unbiased drug screen revealed that 4 cyclooxygenase (COX) inhibitors reduced the generation of serotonergic interneurons in the developing spinal cord.

View Article and Find Full Text PDF

The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain.

View Article and Find Full Text PDF

Neurons respond to changes in the levels of activity they experience in a variety of ways, including structural changes at pre- and postsynaptic terminals. An essential plasticity signal required for such activity-regulated structural adjustments are reactive oxygen species (ROS). To identify sources of activity-regulated ROS required for structural plasticity we used the Drosophila larval neuromuscular junction as a highly tractable experimental model system.

View Article and Find Full Text PDF

Sea lampreys are a vertebrate model of interest for the study of spontaneous axon regeneration after spinal cord injury (SCI). Axon regeneration research in lampreys has focused on the study of giant descending neurons, but less so on neurochemically-distinct descending neuronal populations with small caliber axons. Corticotropin-releasing hormone (CRH) is a neuropeptide that regulates the stress response or locomotion.

View Article and Find Full Text PDF

The expression of the corticotropin-releasing hormone (PmCRH) and the CRH-binding protein (PmCRHBP) mRNAs was studied by in situ hybridization in the brain of prolarvae, larvae, and adults of the sea lamprey Petromyzon marinus. We also generated an antibody against the PmCRH mature peptide to study the distribution of PmCRH-immunoreactive cells and fibers. PmCRH immunohistochemistry was combined with antityrosine hydroxylase immunohistochemistry, PmCRHBP in situ hybridization, or neurobiotin transport from the spinal cord.

View Article and Find Full Text PDF

NOP56 belongs to a C/D box small nucleolar ribonucleoprotein complex that is in charge of cleavage and modification of precursor ribosomal RNAs and assembly of the 60S ribosomal subunit. An intronic expansion in gene causes Spinocerebellar Ataxia type 36, a typical late-onset autosomal dominant ataxia. Although vertebrate animal models were created for the intronic expansion, none was studied for the loss of function of .

View Article and Find Full Text PDF

Kisspeptin peptides play major roles in the regulation of reproduction and puberty onset in mammals. While most mammals only have one kisspeptin gene, other jawed vertebrates present two or three genes. Recent data also revealed the presence of two genes in lampreys (jawless vertebrates).

View Article and Find Full Text PDF

In this study, we analyzed the organization of urocortin 3 (Ucn3)-expressing neuronal populations in the brain of the adult sea lamprey by means of in situ hybridization. We also studied the brain of larval sea lampreys to establish whether this prosocial neuropeptide is expressed differentially in two widely different phases of the sea lamprey life cycle. In adult sea lampreys, Ucn3 transcript expression was observed in neurons of the striatum, prethalamus, nucleus of the medial longitudinal fascicle, torus semicircularis, isthmic reticular formation, interpeduncular nucleus, posterior rhombencephalic reticular formation and nucleus of the solitary tract.

View Article and Find Full Text PDF

Autosomal recessive ataxias are much less well studied than autosomal dominant ataxias and there are no clearly defined systems to classify them. Autosomal recessive ataxias, which are characterized by neuronal and multisystemic features, have significant overlapping symptoms with other complex multisystemic recessive disorders. The generation of animal models of neurodegenerative disorders increases our knowledge of their cellular and molecular mechanisms and helps in the search for new therapies.

View Article and Find Full Text PDF

Hereditary dominant ataxias are a heterogeneous group of neurodegenerative conditions causing cerebellar dysfunction and characterized by progressive motor incoordination. Despite many efforts put into the study of these diseases, there are no effective treatments yet. Zebrafish models are widely used to characterize neuronal disorders due to its conserved vertebrate genetics that easily support genetic edition and their optic transparency that allows observing the intact CNS and its connections.

View Article and Find Full Text PDF

The identification of three somatostatin (SST) genes (SSTa, SSTb, and SSTc) in lampreys (Tostivint et al. Gen Comp Endocrinol 237:89-97 https://doi.org/10.

View Article and Find Full Text PDF

Cellular senescence is considered a stress response imposing a stable cell cycle arrest to restrict the growth of damaged cells. More recently however, cellular senescence was identified during mouse embryo development at particular structures during specific periods of time. This programmed cell senescence has been proposed to serve developmental and morphogenetic functions and to potentially represent an evolutionary origin of senescence.

View Article and Find Full Text PDF

In a recent study, we showed that GABA and baclofen (a GABAB receptor agonist) inhibit caspase activation and promote axon regeneration in descending neurons of the sea lamprey brainstem after a complete spinal cord injury (Romaus-Sanjurjo et al., 2018a). Now, we repeated these treatments and performed 2 independent Illumina RNA-Sequencing studies in the brainstems of control and GABA or baclofen treated animals.

View Article and Find Full Text PDF

Five prosomatostatin genes (PSST1, PSST2, PSST3, PSST5, and PSST6) have been recently identified in elasmobranchs (Tostivint et al., General and Comparative Endocrinology, 2019, 279, 139-147). In order to gain insight into the contribution of each somatostatin to specific nervous systems circuits and behaviors in this important jawed vertebrate group, we studied the distribution of neurons expressing PSST mRNAs in the central nervous system (CNS) of Scyliorhinus canicula using in situ hybridization.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is a neuropeptide that modulates processes such as digestion, satiety, and anxiety. CCK-type peptides have been characterized in jawed vertebrates and invertebrates, but little is known about CCK-type signalling in the most ancient group of vertebrates, the agnathans. Here, we have cloned and sequenced a cDNA encoding a sea lamprey (Petromyzon marinus L.

View Article and Find Full Text PDF

Cellular senescence is a stress response that limits the proliferation of damaged cells by establishing a permanent cell cycle arrest. Different stimuli can trigger senescence but excessive production or impaired clearance of these cells can lead to their accumulation during aging with deleterious effects. Despite this potential negative side of cell senescence, its physiological role as a pro-regenerative and morphogenetic force has emerged recently after the identification of programmed cell senescence during embryogenesis and during wound healing and limb regeneration.

View Article and Find Full Text PDF

Galanin is a neuropeptide that is widely expressed in the mammalian brain, where it regulates many physiological processes, including feeding and nociception. Galanin has been characterized extensively in jawed vertebrates (gnathostomes), but little is known about the galanin system in the most ancient extant vertebrate class, the jawless vertebrates or agnathans. Here, we identified and cloned a cDNA encoding the sea lamprey () galanin precursor ().

View Article and Find Full Text PDF

Taurine is one of the most abundant free amino acids in the brain. It is well known that taurine protects the brain from further damage after a traumatic event. However, only a few studies have looked at the possible role of taurine in the regulation of axon regeneration after injury.

View Article and Find Full Text PDF

Classical neurotransmitters are mainly known for their roles as neuromodulators, but they also play important roles in the control of developmental and regenerative processes. Here, we used the lamprey model of spinal cord injury to study the effect of serotonin in axon regeneration at the level of individually identifiable descending neurons. Pharmacological and genetic manipulations after a complete spinal cord injury showed that endogenous serotonin inhibits axonal regeneration in identifiable descending neurons through the activation of serotonin 1A receptors and a subsequent decrease in cyclic adenosine monophosphate (cAMP) levels.

View Article and Find Full Text PDF

In this article, caspase activation in identifiable reticulospinal neurons of lampreys was inhibited after a complete spinal cord injury using a specific agonist of the GABAA receptor (muscimol). The data presented in this article are quantifications of fluorescent labelling of identifiable descending neurons of larval lampreys after a complete spinal cord injury using fluorochrome-labelled inhibitors of caspases (FLICA) and the corresponding statistical analysis. A single dose of muscimol decreased the intensity of FLICA labelling in giant identifiable reticulospinal neurons following spinal cord injury in lampreys.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes the death of neurons and glial cells due to the initial mechanical forces (i.e., primary injury) and through a cascade of secondary molecular events (e.

View Article and Find Full Text PDF