Publications by authors named "Sobia Ekram"

The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration.

View Article and Find Full Text PDF

Background: Oxidative stress (OS) is mainly associated with the pathogenesis of intervertebral disc (IVD) degeneration; it causes nucleus pulposus cells (NPCs) to undergo senescence and triggers autophagy and apoptosis. This study aims to evaluate the regeneration potential of extracellular vesicles (EVs) derived from human umbilical cord-mesenchymal stem cells (hUC-MSCs) in an rat NPC-induced OS model.

Design: NPCs were isolated from rat coccygeal discs, propagated, and characterized.

View Article and Find Full Text PDF

Background: Intervertebral disc (IVD) shows aging and degenerative changes earlier than any other body connective tissue. Its repair and regeneration provide a considerable challenge in regenerative medicine due to its high degree of infrastructure and mechanical complexity. Mesenchymal stem cells, due to their tissue resurfacing potential, represent many explanatory pathways to regenerate a tissue breakdown.

View Article and Find Full Text PDF

Tissue engineering is a promising approach for the repair and regeneration of cartilaginous tissue. Appropriate three-dimensional scaffolding materials that mimic cartilage are ideal for the repair of chondral defects. The emerging decellularized tissue-based scaffolds have the potential to provide essential biochemical signals and structural integrity, which mimics the natural tissue environment and directs cellular fate.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain. Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix (ECM). Mesenchymal stem cells (MSCs) have been envisioned as a promising treatment for degenerative illnesses.

View Article and Find Full Text PDF

Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden. The etiology of intervertebral disc (IVD) degeneration is complicated, and its mechanism is still not completely understood. Factors such as aging, systemic inflammation, biochemical mediators, toxic environmental factors, physical injuries, and genetic factors are involved in the progression of its pathophysiology.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is an asymptomatic pathophysiological condition and a strong causative factor of low back pain. There is no cure available except spinal fusion and pain management. Stem cell-based regenerative medicine is being considered as an alternative approach to treat disc diseases.

View Article and Find Full Text PDF