Publications by authors named "Sobhana B Boga"

A synthetic method to access novel azido-insulin analogs directly from recombinant human insulin (RHI) was developed via diazo-transfer chemistry using imidazole-1-sulfonyl azide. Systematic optimization of reaction conditions led to site-selective azidation of amino acids B1-phenylalanine and B29-lysine present in RHI. Subsequently, the azido-insulin analogs were used in azide-alkyne [3 + 2] cycloaddition reactions to synthesize a diverse array of triazole-based RHI bioconjugates that were found to be potent human insulin receptor binders.

View Article and Find Full Text PDF

The emergence and evolution of new immunological cancer therapies has sparked a rapidly growing interest in discovering novel pathways to treat cancer. Toward this aim, a novel series of pyrrolidine derivatives (compound ) were identified as potent inhibitors of ERK1/2 with excellent kinase selectivity and dual mechanism of action but suffered from poor pharmacokinetics (PK). The challenge of PK was overcome by the discovery of a novel 3()-thiomethyl pyrrolidine analog .

View Article and Find Full Text PDF

Compound 5 (SCH772984) was identified as a potent inhibitor of ERK1/2 with excellent selectivity against a panel of kinases (0/231 kinases tested @ 100 nM) and good cell proliferation activity, but suffered from poor PK (rat AUC PK @10 mpk = 0 μM h; F% = 0) which precluded further development. In an effort to identify novel ERK inhibitors with improved PK properties with respect to 5, a systematic exploration of sterics and composition at the 3-position of the pyrrolidine led to the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 28 with vastly improved PK (rat AUC PK @10 mpk = 26 μM h; F% = 70).

View Article and Find Full Text PDF

8-Amino-imidazo[1,5-a]pyrazine-based Bruton's tyrosine kinase (BTK) inhibitors, such as 6, exhibited potent inhibition of BTK but required improvements in both kinase and hERG selectivity (Liu et al., 2016; Gao et al., 2017).

View Article and Find Full Text PDF

We report the design and synthesis of a series of novel Bruton's Tyrosine Kinase (BTK) inhibitors with a carboxylic acid moiety in the ribose pocket. This series of compounds has demonstrated much improved off-target selectivities including adenosine uptake (AdU) inhibition compared to the piperidine amide series. Optimization of the initial lead compound 4 based on BTK enzyme inhibition, and human peripheral blood mononuclear cell (hPBMC) and human whole blood (hWB) activity led to the discovery of compound 40, with potent BTK inhibition, reduced off target activities, as well as favorable pharmacokinetic profile in both rat and dog.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a Tec family kinase with a well-defined role in the B cell receptor (BCR) pathway. It has become an attractive kinase target for selective B cell inhibition and for the treatment of B cell related diseases. We report a series of compounds based on 8-amino-imidazo[1,5-a]pyrazine that are potent reversible BTK inhibitors with excellent kinase selectivity.

View Article and Find Full Text PDF

Application of the Ferrier rearrangement led to a novel carbohydrate based synthetic route to 4-aminohexenoic acid viz. (R) and (S)-vigabatrin. The potential of D- glucose or D-galactose as the chiral starting materials for the synthesis of (R) and (S)- vigabatrin has been explored.

View Article and Find Full Text PDF

The total synthesis of cytostatin, an antitumor agent belonging to the fostriecin family of natural products, is described in full detail. The convergent approach relied on a key epoxide-opening reaction to join the two stereotriad units and a single-step late-stage stereoselective installation of the sensitive (Z,Z,E)-triene through a beta-chelation-controlled nucleophilic addition. The synthetic route provided rapid access to the C4-C6 stereoisomers of the cytostatin lactone, which were prepared and used to define the C4-C6 relative stereochemistry of the natural product.

View Article and Find Full Text PDF