Publications by authors named "Sobhan Sen"

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate detection of antibiotic sensitivity in bacteria is essential for effective treatment and controlling antibiotic resistance, but it's challenging to assess changes in bacterial membranes that relate to resistance.
  • Researchers developed new fluorescent dyes, 4AP-C9 and 4AP-C13, which help visualize and quantify how antibiotics affect bacterial membranes at a very precise level.
  • The dyes' unique properties allow for detecting membrane damage and quantifying resistance sensitivity through advanced imaging techniques, showing promise for rapid and accurate diagnosis of resistant infections in clinical settings.
View Article and Find Full Text PDF

Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored.

View Article and Find Full Text PDF

Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive.

View Article and Find Full Text PDF

Double-stranded DNA bears the highest linear negative charge density (2 per base-pair) among all biopolymers, leading to strong interactions with cations and dipolar water, resulting in the formation of a dense 'condensation layer' around DNA. Interactions involving proteins and ligands binding to DNA are primarily governed by strong electrostatic forces. Increased salt concentrations impede such electrostatic interactions - a situation that prevails in oceanic species due to their cytoplasm being enriched with salts.

View Article and Find Full Text PDF

Probing the kinetics of ligand binding to biomolecules is of paramount interest in biology and pharmacology. Measurements of such kinetic processes provide information on the rate-determining steps that control the binding affinity of ligands to biomolecules, thereby predicting the mechanism of the molecular interaction. In this context, ligand binding to G-quadruplex DNA (GqDNA) structures has attracted tremendous attention primarily because of their use in possible anticancer therapy.

View Article and Find Full Text PDF

Stomach cancer causes the third-highest cancer-related deaths worldwide. Limited availability of anticancer measures with higher efficiency and low unwanted toxicities necessitates the development of better cancer chemotherapeutics. Naphthalene diimide (NDI) derivatives have gained significant attention owing to their excellent anticancer potential.

View Article and Find Full Text PDF
Article Synopsis
  • An optical sensing platform was developed to detect aflatoxin B1 (AFB1) using a fluorescence-based technique that combines graphene quantum dots (GQDs) and the quenching effect of AFB1.
  • GQDs were synthesized from curry tree leaves and demonstrated high selectivity, successfully detecting AFB1 in a range from 5 to 800 ng/mL, with a notably low detection limit of 0.158 ng/mL.
  • The study highlights that this is the first GQD-based sensor capable of detecting AFB1 without the need for biological agents, achieving a recovery rate of up to 106.8% in complex sample matrices.
View Article and Find Full Text PDF

Understanding molecular interactions and dynamics of proteins and DNA in a cell-like crowded environment is crucial for predicting their functions within the cell. Noncanonical G-quadruplex DNA (GqDNA) structures adopt various topologies that were shown to be strongly affected by molecular crowding. However, it is unknown how such crowding affects the solvation dynamics in GqDNA.

View Article and Find Full Text PDF

Prevalence of one or more partially folded intermediates during protein unfolding with different secondary and ternary conformations has been identified as an integral character of protein unfolding. These transition-state species need to be characterized structurally for elucidation of their folding pathways. We have determined the three-dimensional structure of an intermediate state with increased conformational space sampling under urea-denaturing condition.

View Article and Find Full Text PDF

ATP-binding cassette (ABC) transporters couple ATP binding and hydrolysis to the translocation of allocrites across membranes. Two shared nucleotide-binding sites (NBS) participate in this cycle. In asymmetric ABC pumps, only one of them hydrolyzes ATP, and the functional role of the other remains unclear.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

The measurement and understanding of solvation dynamics in DNA have vital biological implications, as protein and ligand binding to DNA can be directly controlled by complex electrostatic interactions of anionic DNA and surrounding dipolar water, and ions. Time-resolved fluorescence Stokes shift (TRFSS) experiments revealed anomalously slow solvation dynamics in DNA much beyond 100 ps that follow either power-law or slow multiexponential decay over several nanoseconds. The origin of such dispersed dynamics remains difficult to understand.

View Article and Find Full Text PDF

The photophysics of green fluorescent protein (GFP) is remarkable because of its exceptional property of excited state proton transfer (ESPT) and the presence of a functional proton wire. Another interesting property of wild-type GFP is that its absorption and fluorescence excitation spectra are sensitive to the presence of polar organic solvents even at very low concentrations. Here, we use a combination of methodologies including site-specific mutagenesis, absorption spectroscopy, steady-state and time-resolved fluorescence measurements and all-atom molecular dynamics simulations in explicit solvent, to uncover the mechanism behind the unique spectral sensitivity of GFP toward organic solvents.

View Article and Find Full Text PDF

Water around biomolecules is special for behaving strangely - both in terms of structure and dynamics, while ions are found to control various interactions in biomolecules such as DNA, proteins and lipids. The questions that how water and ions around these biomolecules behave in terms of their structure and dynamics, and how they affect the biomolecular functions have triggered tremendous research activities worldwide. Such activities not only unfolded important static and dynamic properties of water and ions around these biomolecules, but also provoked heated debate regarding their explanation and role in biological functions.

View Article and Find Full Text PDF

Ras signaling in response to environmental cues is critical for cellular morphogenesis in eukaryotes. This signaling is tightly regulated and its activation involves multiple players. Sometimes Ras signaling may be hyperactivated.

View Article and Find Full Text PDF

Recognition of DNA base mismatches and their subsequent repair by enzymes is vital for genomic stability. However, it is difficult to comprehend such a process in which enzymes sense and repair different types of mismatches with different ability. It has been suggested that the differential structural changes of mismatched bases act as cues to the repair enzymes, although the effect of such DNA structural changes on surrounding water and ion dynamics is inevitable due to strong electrostatic coupling among them.

View Article and Find Full Text PDF

Despite significant interest in understanding the role of the local dielectric environment and lipid-bilayer fluidity/rigidity in resonance energy transfer between chromophores at lipid/water interfaces, a comprehensive approach to quantify such environmental dependence on energy transfer is missing - primarily because of the scarcity of suitable probes. Here we present the results on multi-chromophoric Förster resonance energy transfer (FRET) from a series of 4-aminophthalimide-based molecules (4AP-Cn; n = 2-10, 12) of different lipophilicity (donors), which reside at different depths across the lipid/water interfaces, to rhodamine-6G (Rh6G; acceptor) molecules that stay in a water-rich region near the lipid headgroups. We apply steady-state and time-resolved fluorescence spectroscopy, and find that multi-chromophoric FRET from the series of 4AP-Cn donors to the Rh6G acceptor occurs in a peculiar stepwise fashion at the lipid/water interface of a gel-phase (L) DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature.

View Article and Find Full Text PDF

The present study examines the kinetics of steroids efflux mediated by the Candida drug resistance protein 1 (Cdr1p) and evaluates their interaction with the protein. We exploited our in-house mutant library for targeting the 252 residues forming the twelve transmembrane helices (TMHs) of Cdr1p. The screening revealed 65 and 58 residues critical for β-estradiol and corticosterone transport, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • G-quadruplex DNA structures are significant in cellular functions and serve as potential targets for anti-tumor ligands, specifically examining Hoechst binding to parallel c-Myc GqDNA.
  • The research involved measuring the dynamic Stokes shift of Hoechst over a wide time range and compared it to DAPI binding on different GqDNA, revealing distinct relaxation dynamics between the two ligands.
  • Findings indicate Hoechst tightly binds to parallel mPu22 GqDNA through end-stacking, showing different binding mechanisms compared to DAPI, while the solvation dynamics reflect complex water-DNA interactions that influence the ligand's behavior.
View Article and Find Full Text PDF

An analysis of Candida albicans ABC transporters identified conserved related α-helical sequence motifs immediately C-terminal of each Walker A sequence. Despite the occurrence of these motifs in ABC subfamilies of other yeasts and higher eukaryotes, their roles in protein function remained unexplored. In this study we have examined the functional significance of these motifs in the C.

View Article and Find Full Text PDF

Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lβ') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature.

View Article and Find Full Text PDF

Water-in-oil microemulsion droplets (MEDs) are thermodynamically stable supramolecular structures formed in a mixture of water and oil, stabilized by surfactant layer. Here we use fluorescence correlation spectroscopy (FCS) to measure the diffusion, and the size, size distribution, and polydispersity of MEDs prepared in ternary mixtures of water/oil/sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in heptane, isooctane, and nonane at (near) single droplet level. We compare FCS data directly to dynamic light scattering (DLS) data, which shows that the optical matching point (OMP) conditions of MEDs in different oils (where excess optical polarizability of droplets vanish) severely influence DLS data, while FCS extracts the accurate size, size distribution, and polydispersity of AOT-MEDs in all three oils.

View Article and Find Full Text PDF