Publications by authors named "Sobadini Kaluthota"

Temperate forest tree species that span large geographical areas and climatic gradients often have high levels of genetic variation. Such species are ideal for testing how neutral demographic factors and climate-driven selection structure genetic variation within species, and how this genetic variation can affect ecological communities. Here, we quantified genetic variation in vegetative phenology and growth traits in narrowleaf cottonwood, Populus angustifolia, using three common gardens planted with genotypes originating from source populations spanning the species' range along the Rocky Mountains of North America (ca.

View Article and Find Full Text PDF

Narrowleaf cottonwood (Populus angustifolia James) is an obligate riparian poplar that is a foundation species in river valleys along the Rocky Mountains, spanning 16° of latitude from southern Arizona, USA to southern Alberta, Canada. Its current distribution is fragmented, and genetic variation shows regional population structure consistent with the effects of geographic barriers and past climate. It is thus very well-suited for investigating ecophysiological adaptation associated with latitude.

View Article and Find Full Text PDF

To investigate climatic influence on floodplain trees, we analysed interannual correspondences between the Pacific Decadal Oscillation (PDO), river and groundwater hydrology, and growth and wood (13)C discrimination (Δ(13)C) of narrowleaf cottonwoods (Populus angustifolia) in a semi-arid prairie region. From the Rocky Mountain headwaters, river discharge (Q) was coordinated with the PDO (1910-2008: r(2) = 0.46); this pattern extended to the prairie and was amplified by water withdrawal for irrigation.

View Article and Find Full Text PDF