Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS.
View Article and Find Full Text PDFGraphene modulators are considered a potential solution for achieving high-efficiency light modulation, and graphene-silicon hybrid-integrated modulators are particularly favorable due to their CMOS compatibility and low cost. The exploitation of graphene modulator latent capabilities remains an ongoing endeavour to improve the modulation and energy efficiency. Here, high-efficiency graphene-silicon hybrid-integrated thermal and electro-optical modulators are realized using gold-assisted transfer.
View Article and Find Full Text PDFGraphene is a unique platform for tunable opto-electronic applications thanks to its linear band dispersion, which allows electrical control of resonant light-matter interactions. Tuning the nonlinear optical response of graphene is possible both electrically and in an all-optical fashion, but each approach involves a trade-off between speed and modulation depth. Here, lattice temperature, electron doping, and all-optical tuning of third-harmonic generation are combined in a hexagonal boron nitride-encapsulated graphene opto-electronic device and demonstrate up to 85% modulation depth along with gate-tunable ultrafast dynamics.
View Article and Find Full Text PDFOptical communication can be revolutionized by encoding data into the orbital angular momentum of light beams. However, state-of-the-art approaches for dynamic control of complex optical wavefronts are mainly based on liquid crystal spatial light modulators or miniaturized mirrors, which suffer from intrinsically slow (µs-ms) response times. Here, we experimentally realize a hybrid meta-optical system that enables complex control of the wavefront of light with pulse-duration limited dynamics.
View Article and Find Full Text PDFThe ultrafast carrier dynamics of junctions between two chemically identical, but electronically distinct, transition metal dichalcogenides (TMDs) remains largely unknown. Here, we employ time-resolved photoemission electron microscopy (TR-PEEM) to probe the ultrafast carrier dynamics of a monolayer-to-multilayer (1L-ML) WSe junction. The TR-PEEM signals recorded for the individual components of the junction reveal the sub-ps carrier cooling dynamics of 1L- and 7L-WSe, as well as few-ps exciton-exciton annihilation occurring on 1L-WSe.
View Article and Find Full Text PDFThanks to their long lifetime, spin-forbidden dark excitons in transition metal dichalcogenides are promising candidates for storage applications in opto-electronics and valleytronics. To date, their study has been hindered by inefficient generation mechanisms and the necessity for elaborate detection schemes. In this work, we propose a new hybrid platform that simultaneously addresses both challenges.
View Article and Find Full Text PDFStrain engineering is an attractive approach for tuning the local optoelectronic properties of transition metal dichalcogenides (TMDs). While strain has been shown to affect the nanosecond carrier recombination dynamics of TMDs, its influence on the sub-picosecond electronic relaxation dynamics is still unexplored. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and nonadiabatic molecular dynamics (NAMD) to investigate the ultrafast dynamics of wrinkled multilayer (ML) MoS comprising 17 layers.
View Article and Find Full Text PDFWith conventional electronics reaching performance and size boundaries, all-optical processes have emerged as ideal building blocks for high speed and low power consumption devices. A promising approach in this direction is provided by valleytronics in atomically thin semiconductors, where light-matter interaction allows to write, store, and read binary information into the two energetically degenerate but non-equivalent valleys. Here, nonlinear valleytronics in monolayer WSe is investigated and show that an individual ultrashort pulse with a photon energy tuned to half of the optical band-gap can be used to simultaneously excite (by coherent optical Stark shift) and detect (by a rotation in the polarization of the emitted second harmonic) the valley population.
View Article and Find Full Text PDFOptical-microcavity-enhanced light-matter interaction offers a powerful tool to develop fast and precise sensing techniques, spurring applications in the detection of biochemical targets ranging from cells, nanoparticles, and large molecules. However, the intrinsic inertness of such pristine microresonators limits their spread in new fields such as gas detection. Here, a functionalized microlaser sensor is realized by depositing graphene in an erbium-doped over-modal microsphere.
View Article and Find Full Text PDFSurface plasmons in graphene provide a compelling strategy for advanced photonic technologies thanks to their tight confinement, fast response and tunability. Recent advances in the field of all-optical generation of graphene's plasmons in planar waveguides offer a promising method for high-speed signal processing in nanoscale integrated optoelectronic devices. Here, we use two counter propagating frequency combs with temporally synchronized pulses to demonstrate deterministic all-optical generation and electrical control of multiple plasmon polaritons, excited via difference frequency generation (DFG).
View Article and Find Full Text PDFMixed-dimensional hybrid structures have recently gained increasing attention as promising building blocks for novel electronic and optoelectronic devices. In this context, hybridization of semiconductor nanowires with two-dimensional materials could offer new ways to control and modulate lasing at the nanoscale. In this work, we deterministically fabricate hybrid mixed-dimensional heterostructures composed of ZnO nanowires and MoS monolayers with micrometer control over their relative position.
View Article and Find Full Text PDFInclusion of polymethine cyanine dyes in the cavity of macrocyclic receptors is an effective strategy to alter their absorption and emission behavior in aqueous solution. In this paper, the effect of the host-guest interaction between cucurbit[8]uril (CB[8]) and a model trimethine indocyanine (Cy3) on dye spectral properties and aggregation in water is investigated. Solution studies, performed by a combination of spectroscopic and calorimetric techniques, indicate that the addition of CB[8] disrupts Cy3 aggregates, leading to the formation of a 1 : 1 host-guest complex with an association constant of 1.
View Article and Find Full Text PDFThe ability to tune the optical response of a material via electrostatic gating is crucial for optoelectronic applications, such as electro-optic modulators, saturable absorbers, optical limiters, photodetectors, and transparent electrodes. The band structure of single layer graphene (SLG), with zero-gap, linearly dispersive conduction and valence bands, enables an easy control of the Fermi energy, , and of the threshold for interband optical absorption. Here, we report the tunability of the SLG nonequilibrium optical response in the near-infrared (1000-1700 nm/0.
View Article and Find Full Text PDFSoliton frequency combs generate equally-distant frequencies, offering a powerful tool for fast and accurate measurements over broad spectral ranges. The generation of solitons in microresonators can further improve the compactness of comb sources. However the geometry and the material's inertness of pristine microresonators limit their potential in applications such as gas molecule detection.
View Article and Find Full Text PDFHard disk drives (HDDs) are used as secondary storage in digital electronic devices owing to low cost and large data storage capacity. Due to the exponentially increasing amount of data, there is a need to increase areal storage densities beyond ~1 Tb/in. This requires the thickness of carbon overcoats (COCs) to be <2 nm.
View Article and Find Full Text PDFGraphene is ideally suited for optoelectronics. It offers absorption at telecom wavelengths, high-frequency operation and CMOS-compatibility. We show how high speed optoelectronic mixing can be achieved with high frequency (~20 GHz bandwidth) graphene field effect transistors (GFETs).
View Article and Find Full Text PDFHot charge carriers in graphene exhibit fascinating physical phenomena, whose understanding has improved greatly over the past decade. They have distinctly different physical properties compared to, for example, hot carriers in conventional metals. This is predominantly the result of graphene's linear energy-momentum dispersion, its phonon properties, its all-interface character, and the tunability of its carrier density down to very small values, and from electron- to hole-doping.
View Article and Find Full Text PDFMonolayer transition-metal dichalcogenides with direct bandgaps are emerging candidates for optoelectronic devices, such as photodetectors, light-emitting diodes, and electro-optic modulators. Here we report a low-loss integrated platform incorporating molybdenum ditelluride monolayers with silicon nitride photonic microresonators. We achieve microresonator quality factors >3 × 10 in the telecommunication O- to E-bands.
View Article and Find Full Text PDFSingle-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton-phonon coupling strength has not been measured at room temperature.
View Article and Find Full Text PDFFibrillar amyloids exhibit a fascinating range of mechanical, optical, and electronic properties originating from their characteristic β-sheet-rich structure. Harnessing these functionalities in practical applications has so far been hampered by a limited ability to control the amyloid self-assembly process at the macroscopic scale. Here, we use core-shell electrospinning with microconfinement to assemble amyloid-hybrid fibers, consisting of densely aggregated fibrillar amyloids stabilized by a polymer shell.
View Article and Find Full Text PDFElectron transport across the transition-metal dichalcogenide (TMD)/metal interface plays an important role in determining the performance of TMD-based optoelectronic devices. However, the robustness of this process against structural heterogeneities remains unexplored, to the best of our knowledge. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and atomic force microscopy to investigate the spatially resolved hot-electron-transfer dynamics at the monolayer (1L) MoS/Au interface.
View Article and Find Full Text PDFJanus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin-orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe and via plasma stripping followed thermal annealing of MoS .
View Article and Find Full Text PDFDetection of individual molecules is the ultimate goal of any chemical sensor. In the case of gas detection, such resolution has been achieved in advanced nanoscale electronic solid-state sensors, but it has not been possible so far in integrated photonic devices, where the weak light-molecule interaction is typically hidden by noise. Here, we demonstrate a scheme to generate ultrasensitive down-conversion four-wave-mixing (FWM) in a graphene bipolar-junction-transistor heterogeneous D-shaped fiber.
View Article and Find Full Text PDF