The application of large language models in materials science has opened new avenues for accelerating materials development. Building on this advancement, we propose a novel framework leveraging large language models to optimize experimental procedures for synthesizing quantum dot materials with multiple desired properties. Our framework integrates the synthesis protocol generation model and the property prediction model, both fine-tuned on open-source large language models using parameter-efficient training techniques with in-house synthesis protocol data.
View Article and Find Full Text PDFIntensive nitrogen (N) fertilization enhances crop yield but also increases ammonia (NH) and greenhouse gas (GHG) emissions (CO, CH and NO), requiring sustainable fertilization regimes. The co-application of organic and inorganic fertilizers can decrease the use of inorganic fertilizer, reduce environmental pollution, and enhance soil fertility. A simultaneous investigation of the effects of combined application of organic and inorganic fertilizers on NH volatilization, GHG emissions, and soil fertility is, however, lacking.
View Article and Find Full Text PDFThis study investigated an ultrasound (US) treatment strategy in plasma-activated water (PAW) (UP treatment) to inactivate indigenous aerobic bacteria, Escherichia coli O157:H7, and Listeria monocytogenes in fresh-cut celery. Both plasma discharge and US treatment times contributed to the inactivation of indigenous bacteria in celery. The predicted optimal UP treatment conditions included a discharge time of 61.
View Article and Find Full Text PDFWe propose a soft electromagnetic sliding actuator that provides various planar motions to construct highly compliant actuation systems. The actuator is composed of a fully soft actuation base (stator) for generating electromagnetic and magnetic forces and a rigid neodymium magnet (slider) that slides on the actuation base. A parallel liquid-metal coil array in the stator is designed based on theoretical modeling and an optimization process to maximize the electromagnetic field density.
View Article and Find Full Text PDFWe investigated the relationship between individuals' mental health traits and the characteristics of YouTube videos they watch. The mental health traits considered were stress, depression, anxiety, and self-esteem, which were measured using a survey questionnaire. We considered violence shown in a video, brightness and saturation of a video as video characteristics.
View Article and Find Full Text PDFWe propose a compact wearable glove capable of estimating both the finger bone lengths and the joint angles of the wearer with a simple stretch-based sensing mechanism. The soft sensing glove is designed to easily stretch and to be one-size-fits-all, both measuring the size of the hand and estimating the finger joint motions of the thumb, index, and middle fingers. The system was calibrated and evaluated using comprehensive hand motion data that reflect the extensive range of natural human hand motions and various anatomical structures.
View Article and Find Full Text PDFRecent growing pursuit of skin-mountable devices has been impeded by the complicated structures of most sensing systems, containing electrode grids, stacked multilayers, and even external power sources. Here, a type of touch sensing, termed "triboresistive touch sensing", is introduced for gridless touch recognition based on monolayered ionic power generators. A homogeneous monolayer, i.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a degenerative disease caused by motor neuron damage in the central nervous system, and it is difficult to diagnose early. is widely used to investigate disease mechanisms and discover biomarkers because it is easy to induce disease in through genetic engineering. We performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate changes in phospholipid distribution in the brain tissue of an ALS-induced model.
View Article and Find Full Text PDFWe demonstrate a platform technology for transferring opal films and photonic gel films to flexible substrates. The conventional fabrication procedure for inverse opal photonic gel (IOPG) sensors comprises three major steps: 1) the self-assembly of polystyrene μ-spheres to an opal template film within a channel between the top and bottom substrates, 2) infiltration and photo-polymerisation of the monomer mixture, and 3) etching of the opal template. Owing to the low processing yield of the first step, it is difficult to fabricate multiple sensor arrays on a single substrate.
View Article and Find Full Text PDFSince Ar-gas cluster ion beams (Ar-GCIBs) have been introduced into time-of-flight secondary ion mass spectrometry (ToF-SIMS), there have been various attempts to analyze organic materials and biomolecules that require low-damage analysis and high sensitivity, because Ar-GCIBs allow soft ionization of large molecules such as peptides and proteins due to the low energy per atom. Here, the authors adopted the Ar-GCIB as a primary beam to detect proteins including human insulin, ubiquitin, and cytochrome C (molecular weights are 5808, 8564, and 12 327 Da, respectively). They have confirmed that the detection of the intact proteins was possible when the Ar-GCIB was used as a primary ion beam.
View Article and Find Full Text PDFIn this work, medical diagnosis of sepsis was conducted via quantitative analysis of lysophosphatidylcholine 16:0 (LPC 16:0) by using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry based on a parylene-matrix chip. In the first step, specific mass peaks for the diagnosis of sepsis were searched by comparing MALDI-TOF mass spectra of sepsis patient sera with healthy controls and pneumonia patient sera. Two mass peaks at / = 496.
View Article and Find Full Text PDFTime-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is an analytical technique rapidly expanding in use in biological studies. This technique is based on high spatial resolution (50-100 nm), high surface sensitivity (1-2 nm top-layer), and statistical analytic power. In mass spectrometry imaging (MSI), sample preparation is a crucial step to maintaining the natural state of the biomolecules and providing accurate spatial information.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2018
Although the low temperature plasma mass spectrometry (LTP-MS) is widely used as an analysis tool for many biochemical samples, its application window is somehow limited to the analytes of low molecular mass and high volatility. For this reason, there have been attempts to enhance the ionization/desorption efficiencies with extra heating, for instance. In this study, another enhancement method was suggested using the photocatalytic nano-particles (NPs).
View Article and Find Full Text PDFBrain imaging using time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been reported to produce the distorted biomolecular distributions due to the cholesterol-induced matrix effect when cholesterol migrates to the surface, particularly in white matter, which contains a high level of cholesterol. Frozen-hydrated analysis has been used to inhibit the movement of cholesterol in the brain. In this paper, the authors propose new sample preparation and drying methods that can be used to obtain accurate biomolecular images at room temperature, instead of frozen-hydrated analysis using liquid-nitrogen, which must be continuously supplied to maintain the sample at -160 °C during the experiment.
View Article and Find Full Text PDFCorn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample.
View Article and Find Full Text PDFLipid profiling in nine bacterial species has been accomplished by laser desorption ionization mass spectrometry (LDI-MS) using amorphous silicon (a-Si) thin film with 100 nm thickness. Lipid ions could be generated by LDI on a-Si regardless of ion acquisition modes because of a thermal property of a-Si to govern laser-induced surface heating. In a comparative study of lipid profiling in Bacillus lichemiformis by LDI-MS and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), LDI-MS on a-Si shows a higher efficiency in lipid and lipopeptide detection than MALDI-MS.
View Article and Find Full Text PDF[Purpose] The purpose of this study was to investigate the effect of isometric hip adduction and abduction on trunk muscle activity during plank exercises. [Subjects and Methods] Nineteen healthy male subjects were recruited for this study. All subjects performed the traditional plank exercise (TP), plank exercise with isometric hip adduction (PHAD), and plank exercise with isometric hip abduction (PHAB) by using an elastic band.
View Article and Find Full Text PDFThe popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks.
View Article and Find Full Text PDFInsights on mechanisms for the generation of gas-phase peptide ions and their dissociation in matrix-assisted laser desorption ionization (MALDI) gained from the kinetic and ion yield studies are presented. Even though the time-resolved photodissociation technique was initially used to determine the dissociation kinetics of peptide ions and their effective temperature, it was replaced by a simpler method utilizing dissociation yields from in-source decay (ISD) and post-source decay (PSD). The ion yields for a matrix and a peptide were measured by repeatedly irradiating a region on a sample and collecting ion signals until the sample in the region was completely depleted.
View Article and Find Full Text PDFNucl Med Mol Imaging
March 2013
The whole body I-131 scan is routinely performed in the postoperative treatment of patients with well-differentiated thyroid cancer. Accurate interpretation of whole body I-131 scan after thyroidectomy is critical to appropriate management of patients with thyroid cancer, to prevent unnecessary surgical removal or exposure to radioiodine. Unfortunately, false-positive uptakes in several other organs and their associated disease processes have been reported.
View Article and Find Full Text PDF