Publications by authors named "So-Hee Moon"

The current objective was to evaluate six groups of titanium membranes in a rat calvarial defect model, regarding the surface treatment with or without calcium-phosphate coating and surface topography with no, small, or large holes. Critical size defects (Ф = 8 mm, n = 42) were surgically created in rat calvaria, and then were treated by one of the six groups. Biopsies were obtained at 4 weeks (n = 5 per group) for micro-computed tomography and histomorphometric analyses.

View Article and Find Full Text PDF

Increases in inflammation, coagulation, and CD8 T-cell numbers are associated with an elevated cardiovascular disease (CVD) risk in human immunodeficiency virus (HIV)-infected antiretroviral therapy (ART) recipients. Circulating memory CD8 T cells that express the vascular endothelium-homing receptor CX3CR1 (fractalkine receptor) are enriched in HIV-infected ART recipients. Thrombin-activated receptor (PAR-1) expression is increased in HIV-infected ART recipients and is particularly elevated on CX3CR1 CD8 T cells, suggesting that these cells could interact with coagulation elements.

View Article and Find Full Text PDF

Purpose: The objectives of this study were to evaluate bioactivity of a titanium membrane with anodization, cyclic precalcification, and heat (APH) treatment (APHTM), and to compare APHTM and nontreated titanium membrane (NTTM) in guided bone regeneration using histologic analysis and microcomputed tomography (micro-CT).

Materials And Methods: APHTM samples were prepared and immersed in simulated body fluid for 2 days, then observed using field-emission scanning electron microscopy, followed by an analysis of calcium and phosphate precipitation using an energy dispersive x-ray spectroscopy. For the in vivo experiment, critical-size defects were created in rat calvaria (diameter, 8 mm) and treated with either APHTM or NTTM (n = 14 each).

View Article and Find Full Text PDF

This study investigated the effects of anodization-cyclic precalcification-heat (APH) treatment on the bonding ability of Ca-P coating to the parent metal and osseointegration of Ti-6Al-7Nb implants. Eighteen Ti-6Al-7Nb discs, 9 untreated and 9 APH-treated, were cultured with osteoblast cells in vitro, and the cellular differentiation ability was assayed at 1, 2, and 3 weeks. For in vivo testing, 28 Ti-6Al-7Nb implants (14 implants of each group) were inserted to rat tibias, and after each 4 and 6 weeks of implantation, bone bonding, and osseointegration were evaluated through removal torque and histological analysis.

View Article and Find Full Text PDF

Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti-6Al-4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti-6Al-4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti-6Al-4V alloy surface in tibiae of rats.

View Article and Find Full Text PDF