Publications by authors named "So Ra Lee"

Subretinal fibrosis is a major untreatable cause of poor outcomes in neovascular age-related macular degeneration. Mouse models of subretinal fibrosis all possess a degree of invasiveness and tissue damage not typical of fibrosis progression. This project characterises JR5558 mice as a model to study subretinal fibrosis.

View Article and Find Full Text PDF

The common final pathway to blindness in many forms of retinal degeneration is the death of the light-sensitive primary retinal neurons. However, the normally light-insensitive second- and third-order neurons persist optogenetic gene therapy aims to restore sight by rendering such neurons light-sensitive. Here, we investigate whether bReaChES, a newly described high sensitivity Type I opsin with peak sensitivity to long-wavelength visible light, can restore vision in a murine model of severe early-onset retinal degeneration.

View Article and Find Full Text PDF

How cell-to-cell copy number alterations that underpin genomic instability in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer, remains understudied. Here, by applying scaled single-cell whole-genome sequencing to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences.

View Article and Find Full Text PDF

Müller cells play an essential role in maintaining the health of retinal photoreceptors. Dysfunction of stressed Müller cells often results in photoreceptor degeneration. However, how these cells communicate under stress and the signalling pathways involved remain unclear.

View Article and Find Full Text PDF

Assessing tumour gene fitness in physiologically-relevant model systems is challenging due to biological features of in vivo tumour regeneration, including extreme variations in single cell lineage progeny. Here we develop a reproducible, quantitative approach to pooled genetic perturbation in patient-derived xenografts (PDXs), by encoding single cell output from transplanted CRISPR-transduced cells in combination with a Bayesian hierarchical model. We apply this to 181 PDX transplants from 21 breast cancer patients.

View Article and Find Full Text PDF

The Pentose Phosphate Pathway (PPP), a metabolic offshoot of the glycolytic pathway, provides protective metabolites and molecules essential for cell redox balance and survival. Transketolase (TKT) is the critical enzyme that controls the extent of "traffic flow" through the PPP. Here, we explored the role of TKT in maintaining the health of the human retina.

View Article and Find Full Text PDF

This single-blinded, randomized, controlled study aimed to clinically and radiographically evaluate hard tissue volume stability beyond the bony envelope using three-dimensional preformed titanium mesh (3D-PFTM) for peri-implant dehiscence defects in the anterior maxilla. A total of 28 patients who wished to undergo implant surgery combined with guided bone regeneration (GBR) after extraction of a single maxillary anterior tooth were randomly assigned to two groups depending on the type of collagen membrane used, additionally with the 3D-PFTM-test (n = 14, cross-linked collagen membrane; CCM) and control (n = 14, non-cross-linked collagen membrane; NCCM) groups. Each implant was evaluated radiographically using CBCT at baseline, immediately after surgery, and at 6 months postoperatively.

View Article and Find Full Text PDF

In tumor necrosis factor (TNF) signaling, IκB kinase (IKK) complex-mediated activation of NF-κB is a well-known protective mechanism against cell death via transcriptional induction of pro-survival genes occurring as a late checkpoint. However, recent belief holds that IKK functions as an early cell death checkpoint to suppress the death-inducing signaling complex by regulating receptor interacting protein kinase1 (RIPK1) phosphorylation. In this study, we propose that two major gernaylated 7-hydroxy coumarins, 6-geranyl-7-hydroxycoumarin (ostruthin) and 8-geranyl-7-hydroxycoumarin (8-geranylumbelliferone, 8-GU) isolated from Paramignya timera, facilitate RIPK1-dependent dual modes of apoptosis and necroptosis by targeting IKKβ upon TNF receptor1 (TNFR1) ligation.

View Article and Find Full Text PDF

Progress in defining genomic fitness landscapes in cancer, especially those defined by copy number alterations (CNAs), has been impeded by lack of time-series single-cell sampling of polyclonal populations and temporal statistical models. Here we generated 42,000 genomes from multi-year time-series single-cell whole-genome sequencing of breast epithelium and primary triple-negative breast cancer (TNBC) patient-derived xenografts (PDXs), revealing the nature of CNA-defined clonal fitness dynamics induced by TP53 mutation and cisplatin chemotherapy. Using a new Wright-Fisher population genetics model to infer clonal fitness, we found that TP53 mutation alters the fitness landscape, reproducibly distributing fitness over a larger number of clones associated with distinct CNAs.

View Article and Find Full Text PDF

The importance of Müller glia for retinal homeostasis suggests that they may have vulnerabilities that lead to retinal disease. Here, we studied the effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health. Immunostaining indicated that murine Müller glia expressed insulin receptor (IR), hexokinase 2 (HK2) and phosphoglycerate dehydrogenase (PHGDH) but very little pyruvate dehydrogenase E1 alpha 1 (PDH-E1α) and lactate dehydrogenase A (LDH-A).

View Article and Find Full Text PDF

Genetic polymorphisms may affect the molecular mechanisms underlying determination of skin type. So far, several genetic studies have been reported; however, very few studies have been conducted to examine the relationship between genotype and skin phenotypes. In this study, the genome sequences of individuals tested for five cosmetic characteristics (wrinkles, moisture content, pigmentation, oil content, and ensitivity) were determined, and we also conducted five genome-wide association studies (GWASs) to identify predictive markers.

View Article and Find Full Text PDF

The Notch and transforming growth factor-β (TGFβ) signaling pathways are two intracellular mechanisms that control fibrosis in general but whether they play a major role in retinal fibrosis is less clear. Here we study how these two signaling pathways regulate Müller cell-dominated retinal fibrosis and . Human MIO-M1 Müller cells were treated with Notch ligands and TGFβ1, either alone or in combination.

View Article and Find Full Text PDF

Aims/hypothesis: Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between P2Y12 reaction unit (PRU) and hemoglobin (Hb) levels in chronic kidney disease (CKD) patients undergoing hemodialysis (HD) compared to patients with normal kidney function.
  • In normal function patients, Hb levels are inversely correlated with PRU, but this correlation is absent in CKD patients on HD.
  • Despite lower Hb levels in HD patients, their PRU was significantly higher than that of the control group, indicating that Hb does not play a critical role in determining PRU levels in this population.
View Article and Find Full Text PDF

In tumor necrosis factor (TNF) signaling, phosphorylation and activation of receptor interacting protein kinase 1 (RIPK1) by upstream kinases is an essential checkpoint in the suppression of TNF-induced cell death. Thus, discovery of pharmacological agents targeting RIPK1 may provide new strategies for improving the therapeutic efficacy of TNF. In this study, we found that 3-O-acetylrubianol C (3AR-C), an arborinane triterpenoid isolated from Rubia philippinesis, promoted TNF-induced apoptotic and necroptotic cell death.

View Article and Find Full Text PDF

Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material.

View Article and Find Full Text PDF

Plant-derived lignans have numerous biological effects including anti-tumor and anti-inflammatory activities. Screening of purified constituents of Rubia philippinensis from human glioblastoma cells resistant to TNF-related apoptosis-inducing ligand (TRAIL) has suggested that the lignan pinoresinol was a highly active TRAIL sensitizer. Here we show that treatment with nontoxic doses of pinoresinol in combination with TRAIL induced rapid apoptosis and caspase activation in many types of glioblastoma cells, but not in normal astrocytes.

View Article and Find Full Text PDF

Programmed cell death is critical to the physiological function of multi-cellular organisms, controlling development, immunity, inflammation, and cancer progression. Death receptor (DR)-mediated regulation of a protease functions as a second messenger to initiate a death signal cascade to induce apoptosis or necroptosis. Recently, it has become clear that post-translational modifications (PTMs) of signaling components in the DR complex are highly complex, temporally controlled, and tightly regulated, and play an important role in cell death signaling.

View Article and Find Full Text PDF

Purpose: Subretinal fibroneovascularization is one of the most common causes of vision loss in neovascular AMD (nAMD). Anti-VEGF therapy effectively inhibits vascular leak and neovascularization but has little effect on fibrosis. This study aimed to identify a combination therapy to concurrently inhibit subretinal neovascularization and prevent fibrosis.

View Article and Find Full Text PDF

Despite recent tremendous progress, targeting of TNF-related apoptosis-inducing ligand (TRAIL) as a cancer therapy has limited success in many clinical trials, in part due to inactivation of death inducing signaling complex (DISC)-mediated caspase-8 signaling cascade in highly malignant tumors such as glioblastoma. In this study, screening of constituents derived from Astilbe rivularis for TRAIL-sensitizing activity identified C-27-carboxylated oleanolic acid derivatives (C27OAs) including 3β-hydroxyolean-12-en-27-oic acid (C27OA-1), 3β,6β,7α-trihydroxyolean-12-en-27-oic acid (C27OA-2), and 3β-trans-p-coumaroyloxy-olean-12-en-27-oic acid (C27OA-3) as novel TRAIL sensitizers. Interestingly, these C27OAs did not affect apoptotic cell death induced by either ligation of other death receptor (DR) types, such as TNF and Fas or DNA damaging agents, which suggests that C27OAs effectively and selectively sensitize TRAIL-mediated caspase-8 activation.

View Article and Find Full Text PDF

The arial parts of Scutellaria barbata D. Don (Lamiaceae) efficiently inhibited NO production in BV2 microglial cells, and the active constituents were further isolated based on activity-guided isolation using silica-gel column chromatography, RP-C18 MPLC and prep-HPLC. As the results, 2 flavonoids including 6-methoxynaringenin (1) and 6-O-methylscutellarein (5), and 6 neo-clerodane diterpenes such as scutebarbatine W (2), scutebatas B (3), scutebarbatine B (4), scutebarbatine A (6), 6-O-nicotinolylscutebarbatine G (7), and scutebarbatine X (8) were isolated.

View Article and Find Full Text PDF

Soluble guanylate cyclase (sGC) has been suggested as a therapeutic target for cardiac ischemia-reperfusion (IR) injury. Until now, the molecular mechanism of BAY 60-2770, a sGC activator, in cardiac IR injury has not been assessed. To identify the cardioprotective effects of BAY 60-2770 in IR-injured rat hearts, IR injury was established by occlusion of LAD for 40 min and reperfusion for 7 days, and the effects of BAY 60-2770 on myocardial protection were assessed by echocardiography and TTC staining.

View Article and Find Full Text PDF

Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal nonvascular cells. We have studied the effects of aflibercept and ranibizumab on human Müller cells and photoreceptors exposed to starvation media containing various concentrations of glucose, with or without CoCl2-induced hypoxia.

View Article and Find Full Text PDF

Background: Exenatide exerts cardioprotective effects by attenuating ischaemic reperfusion (IR) injury, possibly through activating the opening of mitochondrial ATP-sensitive potassium channels. We used atomic force microscopy (AFM) to investigate changes in mitochondrial morphology and properties in order to assess exenatide-mediated cardioprotection in IR injury.

Methods: We used an in vivo Sprague-Dawley rat IR model and ex vivo Langendorff injury model.

View Article and Find Full Text PDF

A specific small-molecule inhibitor of the TLR4 signaling complex upstream of the IKK would likely provide therapeutic benefit for NF-κB-mediated inflammatory disease. We previously identified brazilin as a selective upstream IKK inhibitor targeting the Myddosome complex. In this study, using a cell-based ubiquitination assay for IRAK1 and a chemical library comprising a series of structural analogues of brazilin, a novel small molecule, 2-hydroxy-5,6-dihydroisoindolo[1,2-a]isoquinoline-3,8-dione (IinQ), was identified as a selective and potent inhibitor of IRAK1-dependent NF-κB activation upon TLR4 ligation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjjmiq15s5qt2itugb95a30p39a8ge8ef): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once