Publications by authors named "So Mi Jeon"

Background: Cancer cells undergo cellular adaptation through metabolic reprogramming to sustain survival and rapid growth under various stress conditions. However, how brain tumors modulate their metabolic flexibility in the naturally serine/glycine (S/G)-deficient brain microenvironment remain unknown.

Methods: We used a range of primary/stem-like and established glioblastoma (GBM) cell models in vitro and in vivo.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly vascular malignant brain tumor that overexpresses vascular endothelial growth factor (VEGF) and phosphofructokinase 1 platelet isoform (PFKP), which catalyzes a rate-limiting reaction in glycolysis. However, whether PFKP and VEGF are reciprocally regulated during GBM tumor growth remains unknown. Here, we show that PFKP can promote EGFR activation-induced VEGF expression in HIF-1α-dependent and -independent manners in GBM cells.

View Article and Find Full Text PDF

The programmed cell death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) deliver inhibitory signals to regulate immunological tolerance during immune-mediated diseases. However, the role of PD-1 signaling and its blockade effect on human dental pulp stem cells (hDPSCs) differentiation into the osteo-/odontogenic lineage remain unknown. We show here that PD-L1 expression, but not PD-1, is downregulated during osteo-/odontogenic differentiation of hDPSCs.

View Article and Find Full Text PDF

Exposure to radiation causes DNA damage; hence, continuous surveillance and timely DNA repair are important for genome stability. Epigenetic modifications alter the chromatin architecture, thereby affecting the efficiency of DNA repair. However, how epigenetic modifiers coordinate with the DNA repair machinery to modulate cellular radiosensitivity is relatively unknown.

View Article and Find Full Text PDF

The activation of Wnt signaling has been detected in various types of human cancer and has been shown to be associated with cancer development. In the present study, it was revealed that Wnt signaling induced the expression of phosphofructokinase 1 platelet isoform (PFKP), which has been reported to catalyze a rate‑limiting reaction in glycolysis and is important for the Warburg effect, proliferation, colony formation and cancer cell migration. Moreover, it was demonstrated that Wnt3A induced PFKP expression in a β‑catenin‑independent manner, resulting in increased PFK enzyme activity.

View Article and Find Full Text PDF

Dental pulp stem cells (DPSCs) can differentiate into diverse cell lineages, including odontogenic cells that are responsible for dentin formation, which is important in pulp repair and tooth regeneration. While glycolysis plays a central role in various cellular activities in both physiological and pathological conditions, its role and regulation in odontogenic differentiation are unknown. Here, we show that aerobic glycolysis is induced during odontoblastic differentiation from human DPSCs.

View Article and Find Full Text PDF