Publications by authors named "So Kumano"

In this letter, we compare the representational power of random forests, binary decision diagrams (BDDs), and neural networks in terms of the number of nodes. We assume that an axis-aligned function on a single variable is assigned to each edge in random forests and BDDs, and the activation functions of neural networks are sigmoid, rectified linear unit, or similar functions. Based on existing studies, we show that for any random forest, there exists an equivalent depth-3 neural network with a linear number of nodes.

View Article and Find Full Text PDF