Publications by authors named "So Hyang Shin"

Biopolymer films based on apple skin powder (ASP) and carboxymethylcellulose (CMC) were developed with the addition of apple skin extract (ASE) and tartaric acid (TA). ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively.

View Article and Find Full Text PDF

The development of a thin film with well-defined metallic micro/nanostructures, diverse surface functionalities, and superior electronic/optical properties has been a great challenge to researchers seeking an efficient method for the detection of various analytes in chemical and biological sensing applications. Herein, we report a facile and effective approach to the fabrication of an ordered gold island pattern on a glass substrate with contrasted chemical functionalities, which can provide spatially separated sensing zones for multi-detection. In the proposed method, the combination between the micro/nano-imprint lithography and sequential self-assembly approaches exhibited synergistic effects that allowed well-defined structuring and easy surface functionalization in separated sensing zones.

View Article and Find Full Text PDF

Unlabelled: Biodegradable packaging films were developed from polymeric blends of apple peel powder (APP) and carboxymethylcellulose (CMC), into which different nanoclays were incorporated to produce a nanocomposite film. After first estimating the barrier and mechanical properties of 4 different biopolymer films (CMC, methylcellulose, gelatin, and polylactide), CMC was chosen as the best film-forming solution. Three different nanoclays (Cloisite Na(+) , 30B, and 20A) were subsequently dispersed in a CMC film solution to improve the barrier and physical properties of the final CMC nanocomposite films.

View Article and Find Full Text PDF