Background: Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with cerebro-cerebellar damage in very preterm infants, leading to neurodevelopmental impairment. Penetration, from the intraventricular space, of extravasated red blood cells and extracellular hemoglobin (Hb), to the periventricular parenchyma and the cerebellum has been shown to be causal in the development of brain injury following GM-IVH. Furthermore, the damage has been described to be associated with the cytotoxic nature of extracellular Hb-metabolites.
View Article and Find Full Text PDFCerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown.
View Article and Find Full Text PDFDecreased cerebellar volume is associated with intraventricular hemorrhage (IVH) in very preterm infants and may be a principal component in neurodevelopmental impairment. Cerebellar deposition of blood products from the subarachnoid space has been suggested as a causal mechanism in cerebellar underdevelopment following IVH. Using the preterm rabbit pup IVH model, we evaluated the effects of IVH induced at E29 (3 days prior to term) on cerebellar development at term-equivalent postnatal day 0 (P0), term-equivalent postnatal day 2 (P2), and term-equivalent postnatal day 5 (P5).
View Article and Find Full Text PDFSevere cerebral intraventricular hemorrhage (IVH) in preterm infants continues to be a major clinical problem, occurring in about 15-20% of very preterm infants. In contrast to other brain lesions the incidence of IVH has not been reduced over the last decade, but actually slightly increased. Currently over 50% of surviving infants develop post-hemorrhagic ventricular dilatation and about 35% develop severe neurological impairment, mainly cerebral palsy and intellectual disability.
View Article and Find Full Text PDFBackground: Intraventricular hemorrhage (IVH) with post-hemorrhagic ventricular dilatation (PHVD) is a major cause of neurodevelopmental impairment and mortality in preterm infants. The mechanisms leading to PHVD and brain damage remain largely unknown. The choroid plexus and the ependyma, which constitute an essential part of the blood-brain barrier (BBB), are the first structures to encounter the damaging effects of extravasated blood.
View Article and Find Full Text PDFIntraventricular hemorrhage (IVH) with posthemorrhagic ventricular dilatation (PHVD) is a common cause of hydrocephalus in infants. Dysregulation of cerebrospinal fluid (CSF) production by the choroid plexus may contribute to the development of PHVD. The aquaporins (AQPs), transmural water transporting proteins, are believed to contribute to CSF production.
View Article and Find Full Text PDFTo improve cardiovascular research, there is a growing need for arterial characterization in small animals. We developed a method, ARTIC (arterial characterization) for measuring lumen diameter, distension and intima media thickness (IMT). In this study ARTIC was used to automatically characterize the aorta of premature rabbit pups.
View Article and Find Full Text PDFBackground: Cerebral intraventricular hemorrhage (IVH) is a major cause of severe neurodevelopmental impairment in preterm infants. To date, no therapy is available that prevents infants from developing serious neurological disability following IVH. Thus, to develop treatment strategies for IVH, it is essential to characterize the initial sequence of molecular events that leads to brain damage.
View Article and Find Full Text PDFCerebral intraventricular haemorrhage (IVH) is the most common cause of severe neurologic impairment following preterm birth in human infants. Ideally, an animal model for cerebral IVH should allow for reliable noninvasive evaluation of haemorrhagic extension and of subsequent development of posthaemorrhagic ventricular dilatation (PHVD). The aim of this study was to evaluate the use of high-frequency ultrasound (HFU) in premature rabbit pups with cerebral IVH induced by IP glycerol injection.
View Article and Find Full Text PDF