Publications by authors named "Snjezana Romic"

The health-promoting benefits of walnut consumption are substantially ascribed to its fatty acid (FA) profile, which is rich in polyunsaturated FA with an exceptionally high n-3 to n-6 ratio. There are also phytonutrients in walnuts that are linked to health welfare. This review article integrates all studies on the effects of walnuts on the cardiovascular system performed on experimental animals, and thus is a source of data on the mechanisms underlying the observed effects.

View Article and Find Full Text PDF

The aim of this study was to improve insulin sensitivity in fructose-treated animals by ingestion of flavonoid quercetin. Several signs of insulin resistance have been developed in rats by drinking 10% fructose solution for 9 weeks. The effect of 6-week-gavage-administrated quercetin (20 mg/kg/day in 1% methyl cellulose solution) was monitored.

View Article and Find Full Text PDF

The transport of cations in the cardiomyocytes, crucial for the functioning of the heart, can be affected by walnut diet due to the high content of polyunsaturated fatty acids. Healthy and metabolically compromised rats (drinking 10% fructose solution) were subjected to a diet supplemented with 2.4 g of walnuts for 6 weeks to investigate the effect on proteins involved in cation transport in the heart cells.

View Article and Find Full Text PDF

Cholecalciferol improves insulin signaling and glucose metabolism in the heart and reduces circulating non-esterified fatty acids. Cholecalciferol effects on the cardiac fatty acid (FA) metabolism and the consequences on calcium handling were examined. Blood lipid profile was determined.

View Article and Find Full Text PDF

Excessive fructose consumption along with a sedentary lifestyle provokes metabolic disorders and cardiovascular diseases. Fructose overload causes cardiac insulin resistance and increases reliance on fatty acid (FA) uptake and catabolism. The cardiometabolic benefits of exercise training have long been appreciated.

View Article and Find Full Text PDF

Walnut consumption mostly has a positive implication for cardiovascular health. Walnut diet effects on the cardiac fatty acid (FA) metabolism of healthy rats and those with fructose diet-induced metabolic burden were analysed. Both walnuts and fructose increased CD36 transporter level and the nuclear content of some/all of Lipin 1/PPARα/PGC-1 complex partners, as well as cytosolic and nuclear FOXO1.

View Article and Find Full Text PDF

A number of alterations have been identified in lipid metabolism within adipose tissue and liver in obesity. Less is known about the capacity of skeletal muscle for the metabolism of fatty acids in obesity-related insulin resistance, though it is evident that dry cow muscles may contain increased triglyceride content. The current study was therefore undertaken to evaluate the skeletal muscle expression of proteins of the fatty acid metabolism in dry cows with different body condition scores (BCS).

View Article and Find Full Text PDF

Context: The evidence on potential cross-talk of vitamin D and insulin in the regulation of cardiac metabolism is very scanty.

Objective: Cholecalciferol was administered to male Wistar rats for six weeks to study its effects on cardiac glucose metabolism regulation.

Materials And Methods: An expression, phosphorylation and/or subcellular localisation of insulin signalling molecules, glucose transport and metabolism key proteins were studied.

View Article and Find Full Text PDF

We previously reported that low-intensity exercise prevented cardiac insulin resistance induced by a fructose-rich diet (FRD). To examine whether low-intensity exercise could prevent the disturbances of key molecules of cardiac glucose metabolism induced by FRD in male and ovariectomized (ovx) female rats, animals were exposed to 10% fructose solution (SF) or underwent both fructose diet and exercise (EF). Exercise prevented a decrease in cardiac GSK-3β phosphorylation induced by FRD in males (p < .

View Article and Find Full Text PDF

Context: Excessive fructose consumption causes ectopic lipid storage leading to metabolic disorders and cardiovascular diseases associated with defective substrate utilisation in the heart.

Objective: Examining the preventive impact of low-intensity exercise on alterations related to fructose-rich diet (FRD) on cardiac fatty acid (FA) transport and metabolism.

Materials And Methods: Male Wistar rats were divided into control and two groups that received 10% fructose for 9 weeks, one of which was additionally exposed to exercise.

View Article and Find Full Text PDF

Consumption of walnuts is beneficial for cardiovascular health. To study walnut effects on proteins involved in vascular tone regulation, control and fructose-fed rats were subjected to walnut diet for 6 weeks. In contrast with increased energy intake and body mass gain, aortic protein level of L-type calcium channel alpha subunit was decreased and the level of SUR2B subunit of ATP-sensitive K + channel was increased in healthy rats subjected to walnuts, together with improved Akt phosphorylation.

View Article and Find Full Text PDF

Both a diet rich in fructose and chronic stress exposure induce metabolic and cardiovascular disturbances. The aim of this study was to examine the effects of the fructose-rich diet and chronic stress, separately and in combination, on insulin signaling and molecules regulating glycogen synthesis and ion transport in the heart, and to reveal whether these effects coincide with changes in glucocorticoid receptor (GR) activation. Male Wistar rats were subjected to 10% fructose in drinking water and/or to chronic unpredictable stress for 9 weeks.

View Article and Find Full Text PDF

Exercise is important nonpharmacological treatment for improvement of insulin sensitivity in menopause. However, its effect on menopausal cardiac insulin resistance is needing further research. We investigated protective effects of low-intensity exercise on cardiac insulin signaling, inflammation, regulation of nitric oxide synthase (NOS) and matrix metalloproteinase 9 (MMP-9) in ovariectomized (OVX) Wistar rats, submitted to 10% fructose solution for 9 weeks.

View Article and Find Full Text PDF

Fatty acid (FA) uptake and/or intramuscular triglyceride (TG) accumulation in skeletal muscle are increased in obesity, type 2 diabetes and aging. FA translocase (FAT/CD36) translocation, lipin-1 subcellular localization and nuclear factor kappa B (NF-κB) p65 protein content in quadriceps muscle of young and old obese Zucker fa/fa rats and their lean controls were analyzed by immunoblot to define obesity- and aging-related alterations in FA uptake, their subsequent metabolic fate and potential to activate pro-inflammatory signaling. As expected, obesity increased FAT/CD36 content in plasma membrane in quadriceps muscle of fa/fa rats.

View Article and Find Full Text PDF

Increased intake of fructose in humans and laboratory animals is demonstrated to be a risk factor for development of metabolic disorders (insulin resistance, metabolic syndrome, type 2 diabetes) and cardiovascular diseases. On the other hand, estradiol is emphasized as a cardioprotective agent. The main goal of this review is to summarize recent findings on damaging cardiac effects of fructose-rich diet in females, mostly experimental animals, and to evaluate protective capacity of estradiol.

View Article and Find Full Text PDF

We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.

View Article and Find Full Text PDF

Introduction: The cardiovascular renin-angiotensin system (RAS) could be affected by gender and dietary regime. We hypothesized that male rats will be more susceptible to activation of RAS in the heart and aorta, as a response to a fructose-rich diet (FRD).

Materials And Methods: Both male and female Wistar rats were given a 10% (w/v) fructose solution for 9 weeks.

View Article and Find Full Text PDF

Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups.

View Article and Find Full Text PDF

To give new insight to alterations of cardiac lipid metabolism accompanied by a fructose-rich diet (FRD), rats of both sexes were exposed to 10 % fructose in drinking water during 9 weeks. The protein level and subcellular localization of the main regulators of cardiac lipid metabolism, such as lipin 1, peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), carnitine palmitoyltransferase I (CPTI), and CD36 were studied. Caloric intake in fructose-fed rats (FFR) of both sexes was increased.

View Article and Find Full Text PDF

It is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats.

View Article and Find Full Text PDF

Fructose-rich diets (FRD) cause cardiac insulin resistance manifested by impairment of Akt/endothelial NO synthase (eNOS) signalling. In contrast, oestradiol (E2) activates this signalling pathway in the heart. To study the ability of E2 to revert the detrimental effect of fructose on cardiac Akt/eNOS, female rats were subjected to a FRD and ovariectomy followed with or without E2 replacement.

View Article and Find Full Text PDF

Fructose rich diet increases hepatic triglycerides production and has deleterious cardiac effects. Estrogens are involved in regulation of lipid metabolism as well, but their effects are cardio beneficial. In order to study effects of fructose rich diet on the main heart fatty acid transporter CD36 and the role of estrogens, we subjected ovariectomized female rats to the standard diet or fructose rich diet, with or without estradiol (E2) replacement.

View Article and Find Full Text PDF