We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5.
View Article and Find Full Text PDFA bis-triarylborane tetracation (4-Ar B-3,5-Me C H )-C≡C-C≡C-(3,5-Me C H -4-BAr [Ar=(2,6-Me -4-NMe -C H ) ] (2 ) shows distinctly different behaviour in its fluorimetric response than that of our recently published bis-triarylborane 5-(4-Ar B-3,5-Me C H )-2,2'-(C H S) -5'-(3,5-Me C H -4-BAr ) (3 ). Single-crystal X-ray diffraction data on the neutral bis-triarylborane precursor 2 N confirm its rod-like dumbbell structure, which is shown to be important for DNA/RNA targeting and also for BSA protein binding. Fluorimetric titrations with DNA/RNA/BSA revealed the very strong affinity of 2 and indicated the importance of the properties of the linker connecting the two triarylboranes.
View Article and Find Full Text PDFThe coordination properties of N'-(2-hydroxy-3-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (HL1), N'-(2-hydroxy-4-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (HL2) and N'-(2-hydroxy-5-methoxyphenylmethylidene)-3-pyridinecarbohydrazide (HL3) toward Fe(III) ions were studied by computational, spectrometric (MS) and spectroscopic methods (UV-Vis, IR and Raman spectroscopy) in solid state and in solution. Free ligands were present in keto-amine form with intramolecular H-bond. In MeOH:HO 1:1 system, the 1:1 complexes with Fe(III) were formed, characterized by lgK ≥ 6.
View Article and Find Full Text PDFHuman telomeric G-quadruplexes are emerging targets in anticancer drug discovery since they are able to efficiently inhibit telomerase, an enzyme which is greatly involved in telomere instability and immortalization process in malignant cells. G-quadruplex (G4) DNA is highly polymorphic and can adopt different topologies upon addition of electrolytes, additives, and ligands. The study of G-quadruplex forms under various conditions, however, might be quite challenging.
View Article and Find Full Text PDFJ Pharm Biomed Anal
October 2017
The purpose of this study was to develop a NIR spectroscopic method for assessment of drug dissolution from allopurinol immediate release tablets. Thirty three different batches of allopurinol immediate release tablets containing constant amount of the active ingredient, but varying in excipients content and physical properties were introduced in a PLS calibration model. Correlating allopurinol dissolution reference values measured by the routinely used UV/Vis method, with the data extracted from the NIR spectra, values of correlation coefficient, bias, slope, residual prediction determination and root mean square error of prediction (0.
View Article and Find Full Text PDFG-Quadruplex (G4) structures of a human telomeric 24-mer (5'-TTAGGGTTAGGGTTAGGGTTAGGG-3') sequence (Tel24) stabilized by sodium and potassium ions have been assessed using surface-enhanced Raman scattering (SERS) spectroscopy. The distinctive SERS spectra of Tel24 in the presence of 100 mM Na and 100 mM K were obtained and the SERS bands characteristic of the antiparallel basket-type and the mixed hybrid (3+1) structures, respectively, were identified and assigned. The influence of the SERS - active substrate on the scattering enhancement was studied using citrate- and chloride-covered silver nanoparticles, in the absence and presence of the aggregating agent (0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2015
Surface-enhanced Raman scattering (SERS) of four RNA mononucleotides (AMP, GMP, CMP and UMP) has been studied on the citrate-reduced silver colloid aggregated with sodium sulfate. Concentration dependent spectra in the range of 1×10(-7)-1×10(-4) mol dm(-3) were obtained, assigned and interpreted according to the surface selection rules. For purine mononucleotides, AMP and GMP, adsorption onto the silver nanoparticles through the six-membered ring of the nitrogenous base was suggested.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2014
Due to their broad-spectrum antimicrobial activity, silver nanoparticles (AgNPs) have been used in a large number of commercial and medical products. Such proliferated AgNP production poses toxicological and environmental issues which need to be addressed. The present study aimed to investigate the effects of AgNPs on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), important enzymes in areas of neurobiology, toxicology and pharmacology.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2013
Structural forms of aroylhydrazones derived from nicotinic acid hydrazide have been studied in the solid state by FT-IR spectroscopy and in solution by NMR, UV-Vis and ATR spectroscopy. The studied compounds were N'-benzylidene-3-pyridinecarbohydrazide (1), N'-(2,4-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (2), N'-(5-chloro-2-hydroxyphenylmethylidene)-3-pyridinecarbohydrazide (3), and N'-(3,5-dichloro-2-hydroxymethoxyphenylmethylidene)-3-pyridinecarbohydrazide (4). The compound 1 adopted the most stable ketoamine form (form I, -CO-NH-N=C-) in the solid state as well as in various organic solvents.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) and partial least squares (PLS) regression have been applied for the quantification of entacapone isomers E and Z in solution. Nine mixtures of isomers Z and E in ethanol ranging from 0% to 100% w/w were analyzed, for a total entacapone concentration of 1 × 10(-3) mol L(-1). Upon deposition onto commercially available Klarite® gold plates, highly intense and reproducible SERS spectra were obtained from the entacapone isomers.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2012
Molecular structures of aroylhydrazones derived from salicylaldehyde, o-vanilin and nicotinic acid hydrazide in DMSO and DMSO/H(2)O mixtures have been studied by NMR, UV-Vis, ATR and Raman spectroscopy. The addition of water to the system did not induce the tautomeric conversion of the existing form constituted of the ketoamino hydrazide part and the enolimino aldehyde part, but it was involved in the formation of hydrated molecules. Vibrational spectra (ATR and Raman) clearly indicated hydrogen bonding of the studied hydrazones through the carbonyl, amino and hydroxyl groups with water molecules.
View Article and Find Full Text PDFRaman and surface-enhanced Raman spectra of new DNA/RNA-binding compounds consisting of three imidazole (Im) and three pyridine (Py) rings connected by tripodal polyaminomethylene linkages were obtained by the near-infrared excitation at 1064 nm. Study of interactions of Im and Py polyamines with single-stranded RNA polynucleotides (poly A, poly G, poly C, poly U), double-stranded DNA polynucleotides (poly dAdT-poly dAdT, poly dGdC-poly dGdC) and calf thymus DNA (ct-DNA) by surface-enhanced Raman spectroscopy (SERS) reveals unambiguous enhancement of the Raman scattering from the small molecules as well as appearance of new bands in spectra associated mainly with nucleobases. The SERS experiments point toward comparable interactions of Im and Py polyamines with single-stranded purine and pyrimidine polynucleotides.
View Article and Find Full Text PDFAt submicromolar concentrations two novel phenanthridine biguanides exhibit distinctly different spectroscopic signals for dGdC and dAdT sequences, respectively, by opposite fluorimetric changes (quenching for dGdC and increase for dAdT) and especially the bis-biguanide derivative gives an opposite ICD response (negative ICD for dGC and strong positive for dAdT). This specific signalling was explained by the ability of compounds to switch the binding mode from intercalation into dGdC to minor groove binding into dAdT sequences. Both compounds bind to rArU by intercalation, yielding different fluorimetric and CD response in comparison to any of aforementioned ds-DNA.
View Article and Find Full Text PDFIn-line Raman spectroscopy and multivariate analysis were used to monitor Knoevenagel condensation reaction, the final step in preparation of drug entacapone. By applying a fiber optical Raman probe immersed into a reaction vessel Raman spectra of the reaction mixture were recorded in situ during the entacapone synthesis in toluene, heptane and isobutyl acetate. Due to the complexity of the measured spectra, the obtained data were analyzed and interpreted by means of principal component analysis.
View Article and Find Full Text PDFSorption of the cationic surfactant, hexadecyltrimethylammonium cations (HDTMA), on the solid/liquid interface of the natural mordenite tuff (MT) was studied. The examined tuff originated from Croatia consisting of 30% of mordenite. SEM observations confirmed the crystalline nature of mordenite which can be described in terms of aggregates of many small platelets with diameters in the range of 1 μm.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2010
Surface-enhanced Raman scattering (SERS) of the cationic and the neutral form of rhodamine 19 octadecylamide (R19OA) has been studied in the silver citrate colloid using NIR excitation at 1064 nm. Cationic molecules readily adsorb onto negatively charged silver nanoparticles through a positively charged xanthene part of the molecules resulting in surface enhancement of Raman scattering. Due to a lack of the positive charge in molecular structure, SERS spectrum of neutral molecules is not observed.
View Article and Find Full Text PDFSurface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.
View Article and Find Full Text PDFOxalyl amide derivatives bearing 4-dodecyloxy-stilbene as a cis-trans photoisomerizing unit were synthesized. The trans derivative acted as a versatile gelator of various organic solvents, whereas the corresponding cis derivative showed a poor gelation ability or none at all. In diluted solution (c = 2.
View Article and Find Full Text PDF