Publications by authors named "Snezana D Zaric"

Article Synopsis
  • - The study examines three types of hydrogen bonds in glycine and water complexes around metal ions, specifically focusing on interactions involving the NH and oxygen groups attached to a metal ion or the α-carbonyl oxygen.
  • - Different metal complexes of glycine (like cobalt, nickel, and copper) were analyzed using advanced computational methods to understand the nature and strength of these hydrogen bonds.
  • - Results indicate that electrostatic interactions are the strongest attractive force in these complexes, with complex charge having the most significant impact on the energy decomposition of the interactions, while other factors like metal oxidation and atomic number play a lesser role.
View Article and Find Full Text PDF
Article Synopsis
  • * Hydrogen sulfide is a flexible molecule, able to change its bond angle and length with only a minor energy increase, and exhibits a variation in the bond angle (H-S-H) of 15.6° and bond lengths (S-H) of 0.082 Å without affecting the strength of its hydrogen bonds.
  • * The analysis
View Article and Find Full Text PDF

New modes of interaction, antiparallel O-H/O-H interactions of alcohol-alcohol dimers and alcohol-water dimers, were studied by analyzing data in the Cambridge Structural Database (CSD) and by calculating potential energy surfaces at a very accurate quantum chemical CCSD(T)/CBS level. The data reveal the existence of antiparallel interactions in crystal structures and significant interaction energies. Data from the CSD for alcohol-alcohol dimers show 49.

View Article and Find Full Text PDF

Hydrogen bonds of glycine complexes were calculated using quantum chemistry calculations at M06L-GD3/def2-TZVPP level and by analyzing the crystal structures from the Cambridge Structural Database (CSD). One hydrogen bond where amino acid plays the role of the H-donor (NH/O), and two where it plays the role of the H-acceptor (O1/HO, O1 is a coordinated oxygen atom, and, O2/HO, O2 is a non-coordinated oxygen atom) were investigated. The calculations were done on octahedral nickel(II), square pyramidal copper(II), square planar copper(II), palladium(II), and platinum(II) glycine complexes with different charges adjusted using water(s) and/or chlorine ion(s) as the remaining ligands.

View Article and Find Full Text PDF

We present results for a series of complexes derived from a titanium complex capable of activating C-H bonds under mild conditions (PNP)Ti═CHBu(CHBu), where PNP = N[2-PPr-4-methylphenyl]. In addition to the initial activation of methane, a tautomerization reaction to a terminal methylidene is also explored due to methylidene's potential use as a synthetic starting point. Analogous complexes with other low-cost 3d transition metals were studied, such as scandium, titanium, vanadium, and chromium as both isoelectronic and isocharged complexes.

View Article and Find Full Text PDF

The hydrogen bonds of free and coordinated amino acids with water molecule were studied by analyzing data in the crystal structures from the Cambridge Structural Database (CSD) and by quantum chemical calculations. The CSD data indicate bifurcated NH/O hydrogen bonds and O1/HO hydrogen bonds of coordinated oxygen. The O/HO hydrogen bonds of free zwitterions and non-coordinated carbonyl oxygen (O2/HO) in metal complexes form primarily linear, non-bifurcated hydrogen bonds.

View Article and Find Full Text PDF

All water-water contacts in the crystal structures from the Cambridge Structural Database with ≤ 4.0 Å have been found. These contacts were analysed on the basis of their geometries and interaction energies from CCSD(T)/CBS calculations.

View Article and Find Full Text PDF

Half-sandwich compounds of benzene, cyclopentadienyl, pentamethylcyclopentadienyl, and indenyl were studied as a new type of aromatic π-systems for interactions with halide anions. Although uncoordinated benzene forms only C-H⋅⋅⋅anion interactions, and hexafluorobenzene forms only anion-π interactions, aromatic ligands in half-sandwich compounds can form both types of interactions, because their entire electrostatic potential surface is positive. These aromatic ligands can form stronger anion-π interactions than organic aromatic molecules, as a consequence of more pronounced dispersion and induction energy components.

View Article and Find Full Text PDF

In the crystal structures of methylated cyclopentadienyl (Cp) complexes (MeCp, MeCp and MeCp) deposited in the Cambridge Structural Database, certain orientation types of stacked contacts can be noted as the most frequent. These orientation preferences can be well explained by the matching of oppositely charged regions of electrostatic potential. Parallel displaced stacking, large offset stacking and C-H.

View Article and Find Full Text PDF

To figure out the possible role of 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) as well as to provide reference thermochemical data in solution, the formation of Lewis acid-base complexes between HFIP (Lewis acid) and a series of 8 different Lewis bases (3 sulfoxides, 3 Nsp pyridine derivatives, 1 aromatic amine, 1 cyclic aliphatic ether) was examined by isothermal titration calorimetry (ITC) experiments and static density functional theory augmented with Dispersion (DFT-D) calculations. Measured ITC association enthalpy values (ΔH ) lie between -9.3 and -14 kcal mol .

View Article and Find Full Text PDF

Stacking interactions between six-membered resonance-assisted hydrogen-bridged (RAHB) rings and C6-aromatic rings were systematically studied by analyzing crystal structures in the Cambridge Structural Database (CSD). The interaction energies were calculated by quantum-chemical methods. Although the interactions are stronger than benzene/benzene stacking interactions (-2.

View Article and Find Full Text PDF

The geometries of the contacts between monosaccharides and aromatic rings of amino acids found in X-ray crystallography structures, in the Protein Data Bank (PDB), were analyzed, while the energies of the interactions were calculated using quantum chemical method. We found 1913 sugar/aromatic ring contacts, 1054 of them (55%) with CH/π interactions and 859 of them (45%) without CH/π interactions. We showed that only the carbohydrate/aromatic contacts with CH/π interactions are preferentially parallel and enable sliding in the plane parallel to aromatic ring.

View Article and Find Full Text PDF

High-level calculations show that the most stable stacking for benzene-cyclohexane is 17% stronger than that for benzene-benzene. However, as these systems are displaced horizontally the benzene-benzene attraction retains its strength. At a displacement of 5.

View Article and Find Full Text PDF

Amyloids are proteins of a cross-β structure found as deposits in several diseases and also in normal tissues (nails, spider net, silk). Aromatic amino acids are frequently found in amyloid deposits. Although they are not indispensable, aromatic amino acids, phenylalanine, tyrosine and tryptophan, enhance significantly the kinetics of formation and thermodynamic stability, while tape or ribbon-like morphology is represented in systems with experimentally detected π-π interactions between aromatic rings.

View Article and Find Full Text PDF

Water molecules from crystal structures archived in the CSD show a relatively large range both in the bond angle and bond lengths. High level ab initio calculations at the CCSD(T)/CBS level predicted a possibility for energetically low-cost (±1 kcal mol-1) changes of the bond angle and bond lengths in a wide range, from 96.4° to 112.

View Article and Find Full Text PDF

Potential energy surfaces of borazine-benzene and borazine-borazine stacking interactions were studied by performing DFT, CCSD(T)/CBS and SAPT calculations. The strongest borazine-benzene stacking was found in a parallel-displaced geometry, with a CCSD(T)/CBS interaction energy of -3.46 kcal mol-1.

View Article and Find Full Text PDF

Carbon monoxide (CO) is an important biological gasotransmitter in living cells. Precise spatial and temporal control over release of CO is a major requirement for clinical application. To date, the most reported carbon monoxide releasing materials use expensive fabrication methods and require harmful and poorly designed tissue-penetrating UV irradiation to initiate the CO release precisely at infected sites.

View Article and Find Full Text PDF

The interactions of nucleic acid bases with non-coordinated and coordinated water molecules were studied by analyzing data in the Protein Data Bank (PDB) and by quantum chemical calculations. The analysis of the data in the crystal structures from the PDB indicates that hydrogen bonds involving oxygen or nitrogen atoms of nucleic acid bases and water molecules are shorter when water is bonded to a metal ion. These results are in agreement with the quantum chemical calculations on geometries and interaction energies of hydrogen bonds; the calculations on model systems show that hydrogen bonds of nucleic acid bases with water bonded to a metal ion are stronger than hydrogen bonds with non-coordinated water.

View Article and Find Full Text PDF

Symmetry Adapted Perturbation Theory (SAPT) analysis shows that stacking interactions of metal-chelate rings are stronger than stacking interactions of organic molecules due to much stronger electrostatic interactions caused by the presence of metals. Depending on the ligand, electrostatic component of chelate stacking can be stronger than dispersion component.

View Article and Find Full Text PDF

Tetrathiafulvalene (TTF) and its derivatives are very well known as electron donors with widespread use in the field of organic conductors and superconductors. Stacking interactions between two neutral TTF fragments were studied by analysing data from Cambridge Structural Database crystal structures and by quantum chemical calculations. Analysis of the contacts found in crystal structures shows high occurrence of parallel displaced orientations of TTF molecules.

View Article and Find Full Text PDF

Chelate-aryl and chelate-chelate stacking interactions of nickel bis(dithiolene) were studied at the CCSD(T)/CBS and DFT levels. The strongest chelate-aryl stacking interaction between nickel bis(dithiolene) and benzene has a CCSD(T)/CBS stacking energy of -5.60 kcal mol.

View Article and Find Full Text PDF

We revisit, in the key of structural chemistry, one of the most known and important drugs: the aspirin. Although apparently simple, the factors determining the molecular structure and supramolecular association in crystals are not trivial. We addressed the problem from experimental and theoretical sides, considering issues from X-ray measurements and results of first-principle reconstruction of molecule and lattices by ab initio calculations.

View Article and Find Full Text PDF

Quantum chemical calculations were performed on model systems of stacking interactions between the acac type chelate rings of nickel, palladium, and platinum. CCSD(T)/CBS calculations showed that chelate-chelate stacking interactions are significantly stronger than chelate-aryl and aryl-aryl stacking interactions. Interaction energy surfaces were calculated at the LC-ωPBE-D3BJ/aug-cc-pVDZ level, which gives energies in good agreement with CCSD(T)/CBS.

View Article and Find Full Text PDF

Edge-to-face interactions between two pyridine molecules and the influence of simultaneous hydrogen bonding of one or both of the pyridines to water on those interactions were studied by analyzing data from ab initio calculations. The results show that the edge-to-face interactions of pyridine dimers that are hydrogen bonded to water are generally stronger than those of non-H-bonded pyridine dimers, especially when the donor pyridine forms a hydrogen bond. The binding energy of the most stable edge-to-face interacting H-bonded pyridine dimer is -5.

View Article and Find Full Text PDF

Mechanistic details of the aerobic oxidative coupling of methyl groups by a novel (L)Pd(Me) complex with the tetradentate ligand, L = N, N-dimethyl-2,11-diaza[3.3](2,6)pyridinophane, has been explored by density functional theory calculations. The calculated mechanism sheds light on the role of this ligand's flexibility in several stages of the reaction, especially as the oxidation state of the Pd changes.

View Article and Find Full Text PDF