Objective: Substantial efforts have been progressively devoted to developing innovative, safe, and effective topical anti-aging products that not only improve the appearance of aged skin but also prioritize environmental sustainability and the responsible use of natural resources. Thus, the current study targeted to evaluate novel, natural emulsion/serum comprising new glycolipid emulsifier (lauryl glucoside/myristyl glucoside/polyglyceryl-6 laurate) and Acmella oleracea plant extract as a model active.
Methods: The developed serum was assessed concerning its stability (freeze-thaw test, accelerated study), safety (in vitro screening of eye irritation potential, dermal absorption study) and efficacy (randomized, active/reference-controlled, half-face, in vivo study).
Recently, nanocrystal dispersions have been considered as a promising formulation strategy to improve the bioavailability of the deuterated pyrazoloquinolinone ligand DK-I-56-1 (7‑methoxy-2-(4‑methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one). In the current study, the freeze-drying process (formulation and process parameters) was investigated to improve the storage stability of the previously developed formulation. Different combinations of lyoprotectant (sucrose or trehalose) and bulking agent (mannitol) were varied while formulations were freeze-dried under two conditions (primary drying at -10 or -45 °C).
View Article and Find Full Text PDFSince natural-origin, sustainable ingredients are preferred by modern consumers, novel emulsifiers and emollients keep entering the market. This study hypothesizes that a combination of in silico, instrumental tools and simplified sensory studies could be used to efficiently characterize emulsions in a shorter timeframe. A total of 22 rather simple o/w emulsions were prepared by a time/energy-saving emulsification process.
View Article and Find Full Text PDFContemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles.
View Article and Find Full Text PDFPreclinical development of deuterated pyrazoloquinolinone ligands, promising drug candidates for various neuropsychiatric disorders, was hindered by unusually low solubility in water and oils. DK-I-60-3 (7-methoxy-d3-2-(4-methoxy-d3-phenyl)-2,5-dihydro-3Hpyrazolo[4,3-c]quinolin-3-one) is one of such pyrazoloquinolinones, and we recently reported about increased oral bioavailability of its nanocrystal formulation (NC). Lipid nanoparticles (LNP) with a high concentration of lecithin, which enhances loading capacity of the lipid matrix, may give rise to further improvement.
View Article and Find Full Text PDFA nanotechnology-based approach to drug delivery presents one of the biggest trends in biomedical science that can provide increased active concentration, bioavailability, and safety compared to conventional drug-delivery systems. Nanoemulsions stand out amongst other nanocarriers for being biodegradable, biocompatible, and relatively easy to manufacture. For improved drug-delivery properties, longer circulation for the nanoemulsion droplets should be provided, to allow the active to reach the target site.
View Article and Find Full Text PDFPoor water solubility of new chemical entities is considered as one of the main obstacles in drug development, as it usually leads to low bioavailability after administration. To overcome these problems, the selection of the appropriate formulation technology needs to be based on the physicochemical properties of the drug and introduced in the early stages of drug research. One example of the new potential drug substance with poor solubility is DK-I-60-3, deuterated pyrazoloquinolinone, designed for the treatment of various neuropsychiatric disorders.
View Article and Find Full Text PDFThe current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.
View Article and Find Full Text PDFObjective: The growing consumers' preferences and concerns regarding healthy ageing, youthful skin appearance, environmental protection and sustainability have triggered an ever-increasing trend towards natural, eco-friendly and ethically sourced anti-ageing products. Accordingly, this paper describes design and evaluation of novel, safe, effective and high-quality emulsion serums, completely based on ingredients of natural origin, intended for improving facial fine lines and wrinkles.
Methods: Model formulations, stabilized by an innovative glycolipid mixed emulsifier (lauryl glucoside/myristyl glucoside/polyglyceryl-6 laurate) and containing Acmella oleracea extract as a model anti-ageing active, were prepared by cold process and fully assessed regarding their rheological behaviour (continuous rotational and oscillatory tests) and physical stability (dynamic-mechanical thermoanalysis - DMTA test).
DK-I-56-1 (7‑methoxy‑2-(4‑methoxy‑d-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one), a recently developed deuterated pyrazoloquinolinone, has been recognized as a lead candidate for treatment of various neuropsychiatric disorders. During preclinical investigation of poorly water-soluble compounds such as DK-I-56-1, the application of nanotechnology could be advantageous due to improved safety and possibly increased bioavailability of nanosized formulation. DK-I-56-1 nanosuspensions stabilized by polysorbate 80, alone or in combination with poloxamers 188 i.
View Article and Find Full Text PDFPLoS One
July 2020
Considering a growing demand for medicinal/cosmetic products with natural actives, this study focuses on the low-energy nanoemulsions (LE-NEs) prepared via the Phase inversion composition (PIC) method at room temperature as potential carriers for natural oil. Four different red raspberry seed oils (ROs) were tested, as follows: cold-pressed vs. CO2-extracted, organic vs.
View Article and Find Full Text PDFThe main objective of this work was to evaluate the performance of recently developed dynamic-mechanical thermoanalysis (DMTA) test as a rapid rheological alternative to conventional freeze-thaw cycling for accelerated stability testing of oil-in-water (O/W) emulsions. The rational for this approach was reducing the time needed for product and process development and optimization, potentially through shortening the time needed for stability evaluation, in order to keep the pace with high formulating turnover imposed by increasing demands for placing products on the market, that is, to facilitate decision making in R&D and QC settings. Six model O/W emulsions were designed, rheologically characterized (continuous rotational and oscillatory tests), and subjected to stability evaluation through freeze-thaw test in stability chamber and DMTA tests using an air-bearing rheometer.
View Article and Find Full Text PDFThe aim of this study was to develop a new dynamic-mechanical thermoanalysis (DMTA) test and evaluate its performance as rapid rheological alternative to routinely used freeze-thaw test for accelerated stability testing of water-in-oil (W/O) emulsions. Due to inherent emulsion instability and versatilities of storage and use conditions, stability assessment of emulsion products still remains complex and challenging task. Recommended stability evaluation protocols are time-consuming, imposing need for alternate test procedures, especially in the early stage of product development, as well as in the quality assurance setting, including quality control.
View Article and Find Full Text PDFTwo types of biocompatible surfactants were evaluated for their capability to formulate skin-friendly/non-irritant microemulsions as vehicles for two poorly water-soluble model drugs differing in properties and concentrations: alkyl polyglucosides (decyl glucoside and caprylyl/capryl glucoside) and ethoxylated surfactants (glycereth-7-caprylate/ caprate and polysorbate 80). Phase behavior, structural inversion and microemulsion solubilization potential for sertaconazole nitrate and adapalene were found to be highly dependent on the surfactants structure and HLB value. Performed characterization (polarized light microscopy, pH, electrical conductivity, rheological, FTIR and DSC measurements) indicated a formulation containing glycereth- 7-caprylate/caprate as suitable for incorporation of both drugs, whereas alkyl polyglucoside-based systems did not exhibit satisfying solubilization capacity for sertaconazole nitrate.
View Article and Find Full Text PDFThis work aimed to deepen the lately acquired knowledge about parenteral nanoemulsions as carriers for brain delivery of risperidone, a poorly water-soluble antipsychotic drug, through establishing the prospective relationship between their physicochemical, pharmacokinetic, biodistribution, and behavioral performances. For this purpose, two optimized risperidone-loaded nanoemulsions, stabilized by lecithin or lecithin/polysorbate 80 mixture, and costabilized by sodium oleate, were produced by high-pressure homogenization. The characterization revealed the favorable droplet size, narrow size distribution, high surface charge, with proven stability to autoclaving and long-term stability for at least one year at 25±2°C.
View Article and Find Full Text PDFAim: The purpose of this study was to evaluate skin permeation and penetration of nonivamide which has been formulated in novel film-forming formulations (FFFs). These formulations aim to prolong the availability of capsaicinoids which are used in long-term treatment of chronic pruritus.
Methods: An oily solution of nonivamide was loaded into porous silica particles which then were suspended in an aqueous dispersion of a sustained release polymer.
Up to now, the molecular mechanism of the penetration enhancing effect of sucrose esters (SEs) on stratumcorneum (SC) has not been explained in details. In this study, variety of surface sensitive techniques, including surface pressure-area (π-A) isotherms, infrared reflection-absorption spectroscopy (IRRAS), and Brewster angle microscopy (BAM), have been used to investigate interactions between SEs and SC intercellular lipids. A monolayer of the mixture of ceramide AS C18:18, stearic acid and cholesterol in the molar ratio of 1:1:0.
View Article and Find Full Text PDFTo elaborate the decisive role of surfactants in promotion of aceclofenac' skin absorption, potentially avoiding irritation, we developed non-ionic microemulsions varying natural or synthetic surfactants: sucrose esters (laurate or myristate) vs. polysorbate 80. A comprehensive physicochemical characterization indicated no significant influence of the solubilized nonsteroidal anti-inflammatory drug on the bicontinuous structure of blank formulations.
View Article and Find Full Text PDFThis paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters--co-emulsifier type, aqueous phase type, homogenization temperature--on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied.
View Article and Find Full Text PDFWith the aid of experimental design, we developed and characterized nanoemulsions for parenteral drug delivery. Formulations containing a mixture of medium-chain triglycerides and soybean oil as oil phase, lecithin (soybean/egg) and polysorbate 80 as emulsifiers, and 0.1 M phosphate buffer solution (pH 8) as aqueous phase were prepared by cold high-pressure homogenization.
View Article and Find Full Text PDFBackground: The potential for use of chitosan-treated alginate microparticles as a vehicle for oral phenytoin delivery has not been thoroughly exploited.
Aim: We studied the influence of preparation procedure and chitosan type on physicochemical properties and release behavior of alginate-chitosan microparticles.
Method: The total number of 24 microparticles formulations prepared by varying contents of calcium gelling ions and varying contents and type of chitosan was examined.
We aimed to prepare and investigate microparticles with the varying contents of calcium gelling ion, loaded with phenytoin, a standard antiepileptic agent, in its acidic form. Two different methods of alginate-based microparticles preparation were used: with and without treatment with chitosan. Furthermore, two standard procedures, the one-stage and the two-stage, were applied.
View Article and Find Full Text PDFAn emerging class of natural surfactants, named alkylpolyglucosides, which can form both, the thermotropic and the lyotropic liquid crystalline phases, were focused. The aim of the study was to integrate some physicochemical properties (characterised through the polarization and transmission electron microscopy, wide-angle X-ray diffraction, thermal analysis and rheology) of the three formulations based on cetearyl glucoside and cetearyl alcohol, with the in vitro (the artificial skin constructs) and in vivo bioavailability of hydrocortisone (HC), in comparison with a standard pharmacopoeial vehicle. The parameters measured in vivo were erythema index (an instrumental human skin blanching assay), transepidermal water loss (TEWL) and stratum corneum hydration.
View Article and Find Full Text PDF