The Canadian Food Inspection Agency (CFIA) is developing an establishment-based risk assessment model to categorize rendering plants that produce livestock feed ingredients (ERA-Renderer model) according to animal and human health risks (i.e., feed safety risks) and help in determining the allocation of inspection resources based on risk.
View Article and Find Full Text PDFThe United States, the EU and Canada established a trilateral working group on the ecosystem approach to ocean health and stressors under the Atlantic Ocean Research Alliance. Recognizing the Atlantic Ocean as a shared resource and responsibility, the working group sought to advance understanding of the Atlantic Ocean and its dynamic systems to improve ocean health, enhance ocean stewardship and promote the sustainable use and management of its resources. This included consideration of multiple ocean-use sectors such as fishing, shipping, tourism and offshore energy.
View Article and Find Full Text PDFThe biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years.
View Article and Find Full Text PDFWhat do people think their best and worst personality traits are? Do their friends agree? Across three samples, 463 college students ("targets") and their friends freely described two traits they most liked and two traits they most disliked about the target. Coders categorized these open-ended trait descriptors into high or low poles of six trait domains (extraversion, agreeableness, conscientiousness, emotional stability, openness, and honesty-humility) and judged whether targets and friends reported the same specific best and worst traits. Best traits almost exclusively reflected high levels of the major trait domains (especially high agreeableness and extraversion).
View Article and Find Full Text PDFAbstract: The Canadian Food Inspection Agency is developing an Establishment-based Risk Assessment (ERA) model for commercial and on-farm mills involved in the manufacture, storage, packaging, labeling, or distribution of livestock feed (ERA-Feed Mill model). This model will help inform the allocation of inspection resources on the basis of feed safety risk, including animal health and food safety risk. In a previous study, 34 risk factors, grouped into inherent, mitigation, and compliance clusters, along with assessment criteria were selected.
View Article and Find Full Text PDFImplementation of marine conservation strategies, such as increasing the numbers, extent, and effectiveness of protected areas (PAs), can help achieve conservation and restoration of ocean health and associated goods and services. Despite increasing recognition of the importance of including aspects of ecological functioning in PA design, the physical characteristics of habitats and simple measures of species diversity inform most PA designations. Marine and terrestrial ecologists have recently been using biological traits to assess community dynamics, functioning, and vulnerability to anthropogenic impacts.
View Article and Find Full Text PDFBenthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meiobenthos (32/64 µm-0.5/1 mm), macrobenthos (250 µm-1 cm), and megabenthos (>1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs.
View Article and Find Full Text PDFClimate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep-ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep-sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.
View Article and Find Full Text PDFThe resiliency of populations and species to environmental change is dependent on the maintenance of genetic diversity, and as such, quantifying diversity is central to combating ongoing widespread reductions in biodiversity. With the advent of next-generation sequencing, several methods now exist for resolving fine-scale population structure, but the comparative performance of these methods for genetic assignment has rarely been tested. Here, we evaluate the performance of sequenced microsatellites and a single nucleotide polymorphism (SNP) array to resolve fine-scale population structure in a critically important salmonid in north eastern Canada, Arctic Charr ().
View Article and Find Full Text PDFThe deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services.
View Article and Find Full Text PDFThe deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables.
View Article and Find Full Text PDFPredictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers.
View Article and Find Full Text PDFThe spatial genetic structure of most species in the open marine environment remains largely unresolved. This information gap creates uncertainty in the sustainable management, recovery, and associated resilience of marine communities and our capacity to extrapolate beyond the few species for which such information exists. We document a previously unidentified multispecies biogeographic break aligned with a steep climatic gradient and driven by seasonal temperature minima in the northwest Atlantic.
View Article and Find Full Text PDFEnvironmental factors can influence diversity and population structure in marine species and accurate understanding of this influence can both improve fisheries management and help predict responses to environmental change. We used 7163 SNPs derived from restriction site-associated DNA sequencing genotyped in 245 individuals of the economically important sea scallop, , to evaluate the correlations between oceanographic variation and a previously identified latitudinal genomic cline. Sea scallops span a broad latitudinal area (>10 degrees), and we hypothesized that climatic variation significantly drives clinal trends in allele frequency.
View Article and Find Full Text PDFDiverse biological communities mediate the transformation, transport, and storage of elements fundamental to life on Earth, including carbon, nitrogen, and oxygen. However, global biogeochemical model outcomes can vary by orders of magnitude, compromising capacity to project realistic ecosystem responses to planetary changes, including ocean productivity and climate. Here, we compare global carbon turnover rates estimated using models grounded in biological versus geochemical theory and argue that the turnover estimates based on each perspective yield divergent outcomes.
View Article and Find Full Text PDFMarine animals with complex life cycles may move passively or actively for fertilization, dispersal, predator avoidance, resource acquisition, and migration, and over scales from micrometers to thousands of kilometers. This diversity has catalyzed idiosyncratic and unfocused research, creating unsound paradigms regarding the role of movement in ecology and evolution. The emerging movement ecology paradigm offers a framework to consolidate movement research independent of taxon, life-history stage, scale, or discipline.
View Article and Find Full Text PDFThe deep ocean encompasses 95% of the oceans' volume and is the largest and least explored biome of Earth's Biosphere. New life forms are continuously being discovered. The physiological mechanisms allowing organisms to adapt to extreme conditions of the deep ocean (high pressures, from very low to very high temperatures, food shortage, lack of solar light) are still largely unknown.
View Article and Find Full Text PDFUnderstanding patterns of dispersal and connectivity among marine populations can directly inform fisheries conservation and management. Advances in high-throughput sequencing offer new opportunities for estimating marine connectivity. We used restriction-site-associated DNA sequencing to examine dispersal and realized connectivity in the sea scallop , an economically important marine bivalve.
View Article and Find Full Text PDFThe 70 % of Earth's surface covered by oceans supports significant biological diversity and immense untapped potential for marine bioproducts. The recently completed international Census of Marine Life (2000-2010) invested heavily in evaluating the diversity, abundance, and distribution of life in the ocean but concluded that at least 50 % and potentially > 90 % of marine species remain undescribed by science. Despite this potential, and numerous successes spanning pharmaceuticals, nutraceuticals, anti-foulants and adhesives, biofuels, biocatalysts (enzymes), and cosmetics, several impediments have slowed marine bioproduct development.
View Article and Find Full Text PDF