Polyethylene terephthalate (PET) is one of the most used polymers, but the non-degradable and persistent nature of PET waste in the environment is a global menace. Hence upcycling PET waste becomes indispensable. Herein, we introduce the first metal-free electrochemical-upcycling of PET into value-added chemicals and H fuel using an organo-electrocatalyst (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO).
View Article and Find Full Text PDFThe convergence of water electrolysis and alkaline fuel cells offers captivating solutions for sustainably harvesting energy. The research explores both hydrazine-assisted seawater electrolysis (hydrazine oxidation reaction (HzOR) and hydrogen production reaction (HER)), as well as alkaline hydrazine fuel cell reactions (HzOR and Oxygen reduction reaction (ORR)) by using a bifunctional cobalt polyaniline derived (Co PANI/C) catalyst. The catalyst shows excellent performance for hydrazine-assisted seawater electrolysis in harsh seawater environments to produce H as fuel with nearly 85% Faradaic efficiency and during alkaline HzOR, the bifunctional catalyst generates H with 95% Faradaic efficiency by acting as both anode and cathode side catalyst.
View Article and Find Full Text PDFAerobic substrate oxidation reactions catalyzed by a heterogeneous catalyst can be looked upon as two independent half-cell reactions, anodic substrate oxidation and the cathodic oxygen reduction reaction (ORR). In this context, Fe PANI/C, a well-known catalyst for the ORR, is chosen to validate this hypothesis, wherein the anodic reaction is hydrazine oxidation. Fe PANI/C shows excellent activity in terms of the electrochemical ORR and hydrazine oxidation in both alkaline aqueous and non-aqueous media and taken together the aerobic oxidation efficacy of hydrazine-like small organic molecules is correlated with the electrochemical outcomes.
View Article and Find Full Text PDF