New antibiotics should ideally exhibit activity against drug-resistant bacteria, delay the development of bacterial resistance to them and be suitable for local delivery at desired sites of infection. Here, we report the rational design, via molecular-docking simulations, of a library of 17 candidate antibiotics against bone infection by wild-type and mutated bacterial targets. We screened this library for activity against multidrug-resistant clinical isolates and identified an antibiotic that exhibits potent activity against resistant strains and the formation of biofilms, decreases the chances of bacterial resistance and is compatible with local delivery via a bone-cement matrix.
View Article and Find Full Text PDFTopoisomerases, the ubiquitous enzymes involved in all DNA processes across the biological world, are targets for various anticancer and antimicrobial agents. In Entamoeba histolytica, the causative agent of amebiasis, we found one of seven unexplored putative topoisomerases to be highly upregulated during heat shock and oxidative stress, and also during the late hours of encystation. Further analysis revealed the upregulated enzyme to be a eukaryotic type IIA topoisomerase (TopoII) with demonstrable activity in vitro.
View Article and Find Full Text PDFPhosphorylation is an important post-translational modification of proteins and is involved in the regulation of a variety of cellular events. The proteome of Entamoeba invadens, the reptilian counterpart of Entamoeba histolytica consists of an overwhelming number of putative protein kinases, and some may have a role to play in Entamoeba encystation. In this study, we have identified a novel protein kinase named as EiCSpk (Entamoeba invadenscyst specific protein kinase) which expressed almost exclusively during encystation.
View Article and Find Full Text PDF