J Photochem Photobiol B
February 2023
In resource limited settings, a cost-effective point-of-care diagnostic testing possessing the characteristics of detecting the minimum viral load of a malady like human immunodeficiency virus (HIV) acquired immune deficiency syndrome (AIDS) is a pressing priority. The present work describes a novel, rapid and field-deployable method using surface enhanced Raman spectroscopy (SERS) for detection and prognosis of HIV positive clinical samples, in seven different viral load ranges varying between 200 and 1 million copies/ml. A relationship between the increasing and decreasing intensity peaks of HIV-1 was also established for quantitation efficacy of the handheld tool.
View Article and Find Full Text PDFGlancing angle deposition (GLAD) is a technique for the fabrication of sculpted micro- and nanostructures under the conditions of oblique vapor flux incident and limited adatom diffusion. GLAD-based nanostructures are emerging platforms with broad sensing applications due to their high sensitivity, enhanced optical and catalytic properties, periodicity, and controlled morphology. GLAD-fabricated nanochips and substrates for chemical and biosensing applications are replacing conventionally used nanomaterials due to their broad scope, ease of fabrication, controlled growth parameters, and hence, sensing abilities.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2021
In this study, surface-enhanced Raman scattering (SERS) based field-deployable platform has been explored for early detection and distinction of the human immunodeficiency virus (HIV-1). A highly optimized silver nanorods array, fabricated using glancing angle deposition technique was used as SERS substrate. Distinct signature peaks for varying concentrations (10 to 10 copies/mL) were identified in five different HIV-1 subtypes (A, B, C, D, and CRF02_AG).
View Article and Find Full Text PDF