Publications by authors named "Sneha Munshi"

A longstanding goal in the field of intrinsically disordered proteins (IDPs) is to characterize their structural heterogeneity and pinpoint the role of this heterogeneity in IDP function. Here, we use multinuclear chemical exchange saturation (CEST) nuclear magnetic resonance to determine the structure of a thermally accessible globally folded excited state in equilibrium with the intrinsically disordered native ensemble of a bacterial transcriptional regulator CytR. We further provide evidence from double resonance CEST experiments that the excited state, which structurally resembles the DNA-bound form of cytidine repressor (CytR), recognizes DNA by means of a "folding-before-binding" conformational selection pathway.

View Article and Find Full Text PDF

Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates -1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of -1 PRF in SARS-CoV-2 also inhibited -1 PRF in a range of bat CoVs-the most likely source of future zoonoses.

View Article and Find Full Text PDF
Article Synopsis
  • The RNA pseudoknot involved in programmed ribosomal frameshifting in SARS-CoV-2 is identified as a potential target for drug development.
  • The study uses optical tweezers to explore how mechanical tension from ribosomes affects the pseudoknot’s structural dynamics, revealing that it can adopt multiple stable forms, including distinct pseudoknotted conformers and alternative stem-loop structures.
  • Findings indicate that Mg ions enhance the mechanical stability of the pseudoknot and promote a knot-like configuration, providing insights into its folding mechanism that could inform future drug design strategies.
View Article and Find Full Text PDF

SARS-CoV-2 uses -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins. Because modulating -1 PRF can attenuate the virus, ligands binding to the RNA pseudoknot that stimulates -1 PRF may have therapeutic potential. Mutations in the pseudoknot have occurred during the pandemic, but how they affect -1 PRF efficiency and ligand activity is unknown.

View Article and Find Full Text PDF

17 years after the SARS-CoV epidemic, the world is facing the COVID-19 pandemic. COVID-19 is caused by a coronavirus named SARS-CoV-2. Given the most optimistic projections estimating that it will take over a year to develop a vaccine, the best short-term strategy may lie in identifying virus-specific targets for small molecule interventions.

View Article and Find Full Text PDF

Approximately 17 years after the severe acute respiratory syndrome coronavirus (SARS-CoV) epidemic, the world is currently facing the COVID-19 pandemic caused by SARS corona virus 2 (SARS-CoV-2). According to the most optimistic projections, it will take more than a year to develop a vaccine, so the best short-term strategy may lie in identifying virus-specific targets for small molecule-based interventions. All coronaviruses utilize a molecular mechanism called programmed -1 ribosomal frameshift (-1 PRF) to control the relative expression of their proteins.

View Article and Find Full Text PDF

The dimensions of intrinsically disordered proteins (IDPs) are sensitive to small energetic-entropic differences between intramolecular and protein-solvent interactions. This is commonly observed on modulating solvent composition and temperature. However, the inherently heterogeneous conformational landscape of IDPs is also expected to be influenced by mutations that can (de)stabilize pockets of local and even global structure, native and non-native, and hence the average dimensions.

View Article and Find Full Text PDF

Structural disorder in proteins arises from a complex interplay between weak hydrophobicity and unfavorable electrostatic interactions. The extent to which the hydrophobic effect contributes to the unique and compact native state of proteins is, however, confounded by large compensation between multiple entropic and energetic terms. Here we show that protein structural order and cooperativity arise as emergent properties upon hydrophobic substitutions in a disordered system with non-intuitive effects on folding and function.

View Article and Find Full Text PDF

DNA-binding protein domains (DBDs) sample diverse conformations in equilibrium facilitating the search and recognition of specific sites on DNA over millions of energetically degenerate competing sites. We hypothesize that DBDs have co-evolved to sense and exploit the strong electric potential from the array of negatively charged phosphate groups on DNA. We test our hypothesis by employing the intrinsically disordered DBD of cytidine repressor (CytR) as a model system.

View Article and Find Full Text PDF

Many intrinsically disordered proteins switch between unfolded and folded-like forms in the presence of their binding partner. The possibility of a pre-equilibrium between the two macrostates is challenging to discern given the complex conformational landscape. Here, we show that CytR, a disordered DNA-binding domain, samples a folded-like excited state in its native ensemble through equilibrium multi-probe spectroscopy, kinetics and an Ising-like statistical mechanical model.

View Article and Find Full Text PDF

The amplitude of thermodynamic fluctuations in biological macromolecules determines their conformational behavior, dimensions, nature of phase transitions and effectively their specificity and affinity, thus contributing to fine-tuned molecular recognition. Unique among large-scale conformational changes in proteins are temperature-induced collapse transitions in intrinsically disordered proteins (IDPs). Here, we show that CytR DNA-binding domain, an IDP that folds on binding DNA, undergoes a coil-to-globule transition with temperature in the absence of DNA while exhibiting energetically decoupled local and global structural rearrangements, and maximal thermodynamic fluctuations at the optimal bacterial growth temperature.

View Article and Find Full Text PDF

In the computational characterization of single domain protein folding, the effective free energies of numerous microstates are projected onto few collective degrees of freedom that in turn serve as well-defined reaction coordinates. In this regard, one-dimensional (1D) free energy profiles are widely used mainly for their simplicity. Since folding and functional landscapes are interlinked, how well can these reduced representations capture the structural and dynamic features of functional states while being simultaneously consistent with experimental observables? We investigate this issue by characterizing the folding of the four-helix bundle bovine acyl-CoA binding protein (bACBP), which exhibits complex equilibrium and kinetic behaviours, employing an Ising-like statistical mechanical model and molecular simulations.

View Article and Find Full Text PDF
Article Synopsis
  • High-resolution studies of two-state proteins reveal that they may exist in partially structured states that are in dynamic balance with their native forms.
  • Researchers used a variety of methods to analyze the folding of Barstar, which exhibits complex conformational behavior, leading to insights about its folding landscape consistent with experimental data.
  • The study suggests that evolutionary pressures to maintain optimal binding with Barnase lead to multistate folding, and specific mutations can enhance stability while simplifying the folding mechanism, indicating that functional demands can shape protein folding behavior.
View Article and Find Full Text PDF