Publications by authors named "Sneha M"

Article Synopsis
  • Natural pigments are gaining popularity, with microbial pigments offering a reliable alternative; one fungal strain (FNG1) was identified for producing a red-orange pigment through molecular analysis.
  • The pigment showed significant antimicrobial activity against various human pathogens, with effective suppression of cancer cells while not affecting non-cancerous cells, suggesting potential therapeutic uses.
  • Further analysis indicated the pigment's high staining capability for cotton textiles, enhancing its utility in various applications without cytotoxic effects.
View Article and Find Full Text PDF

L.f. (red sanders) is an endemic, endangered and economically important tree species distributed in the Eastern Ghats of Andhra Pradesh, India.

View Article and Find Full Text PDF

The synergistic use of (organo)photoredox catalysts with hydrogen-atom transfer (HAT) cocatalysts has emerged as a powerful strategy for innate C(sp)-H bond functionalization, particularly for C-H bonds α- to nitrogen. Azide ion (N) was recently identified as an effective HAT catalyst for the challenging α-C-H alkylation of unprotected, primary alkylamines, in combination with dicyanoarene photocatalysts such as 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN). Here, time-resolved transient absorption spectroscopy over sub-picosecond to microsecond timescales provides kinetic and mechanistic details of the photoredox catalytic cycle in acetonitrile solution.

View Article and Find Full Text PDF

Amongst the current alternatives, algae were proven to be a promising source of biofuel, which is renewable and capable of meeting world demand for transportation fuels. However, a suitable lipid extraction method that efficiently releases the lipids from different algal strains remains a bottleneck. The multifarious pretreatment methods are prevalent in this field of lipid extraction, and therefore, this article has critically reviewed the various lipid extraction methods for ameliorating the lipid yield from algae, irrespective of the strains/species.

View Article and Find Full Text PDF

This research paper examines the exposure to particulate matter (PM) and its deposition on the human respiratory tract (HRT) in 12 critical urban zones - institutional zone, commercial zone, construction zone, hospital zone, landfill zone, industrial zone, residential zone, high-traffic zone, main roads, medium-traffic zone secondary roads, low-traffic zone, coastal zone, and environmentally sensitive zone. This study measured the size-segregated PM concentrations using a Grimm aerosol spectrometer. The multiple-path particle dosimetry model assesses particles' total and regional deposition mass rates for different urban zones.

View Article and Find Full Text PDF

Radical-induced 1,2-metalate rearrangements of boronate complexes are an emerging and promising class of reactions that allow multiple new bonds to be formed in a single, tunable reaction step. These reactions involve the addition of an alkyl radical, typically generated from an alkyl iodide under photochemical activation, to a boronate complex to produce an α-boryl radical intermediate. From this α-boryl radical, there are two plausible reaction pathways that can trigger the product forming 1,2-metalate rearrangement: iodine atom transfer (IAT) or single electron transfer (SET).

View Article and Find Full Text PDF

Organic photocatalysts (PCs) are gaining popularity in applications of photoredox catalysis, but few studies have explored their modus operandi. We report a detailed mechanistic investigation of the electron transfer activation step of organocatalyzed atom transfer radical polymerization (O-ATRP) involving electronically excited organic PCs and a radical initiator, methyl 2-bromopropionate (MBP). This study compares nine -aryl modified PCs possessing dihydrophenazine, phenoxazine, or phenothiazine core chromophores.

View Article and Find Full Text PDF

The photochemical dynamics of three classes of organic photoredox catalysts employed in organocatalyzed atom-transfer radical polymerization (O-ATRP) are studied using time-resolved optical transient absorption and fluorescence spectroscopy. The nine catalysts selected for study are examples of N-aryl and core-substituted dihydrophenazine, phenoxazine and phenothiazine compounds with varying propensities for control of polymerization outcomes. Excited singlet-state lifetimes extracted from the spectroscopic measurements are reported in ,-dimethylformamide (DMF), dichloromethane (DCM), and toluene.

View Article and Find Full Text PDF

The excited-state dynamics of photoexcited diethylamino hydroxybenzoyl hexyl benzoate (DHHB), a UVA absorber widely used in sunscreen formulations, are studied with transient electronic and vibrational absorption spectroscopy methods in four different solvents. In the polar solvents methanol, dimethyl sulfoxide (DMSO), and acetonitrile, strong stimulated emission (SE) is observed at early time delays after photoexcitation at a near-UV wavelength of λ = 360 nm, and decays with time constants of 420 fs in methanol and 770 fs in DMSO. The majority (∼95%) of photoexcited DHHB returns to the ground state with time constants of 15 ps in methanol and 25 ps in DMSO.

View Article and Find Full Text PDF

The rapid development of new applications of photoredox catalysis has so far outpaced the mechanistic studies important for rational design of new classes of catalysts. Here, we report the use of ultrafast transient absorption spectroscopic methods to reveal both mechanistic and kinetic details of multiple sequential steps involved in an organocatalyzed atom transfer radical polymerization reaction. The polymerization system studied involves a ,-diaryl dihydrophenazine photocatalyst, a radical initiator (methyl 2-bromopropionate) and a monomer (isoprene).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of photochemical decarboxylation of carboxylic acids to generate free radicals, which are useful in chemical synthesis.
  • By utilizing advanced mid-infrared spectroscopy, researchers track the decarboxylation process of cyclohexanecarboxylic acid and effectively measure how long reactive carboxyl radicals last in solution.
  • This precise timing will aid in enhancing photocatalytic efficiency and selectivity in future chemical reactions.
View Article and Find Full Text PDF

Phenol represents an ideal polyatomic system for demonstrating photon catalysis because of its large polarizability, well-characterized excited-state potential energy surfaces, and nonadiabatic dissociation dynamics. A nonresonant IR pulse (1064 nm) supplies a strong electric field (4 × 10 V/cm) during the photolysis of isolated phenol (CHOH) molecules to yield CHO + H near two known energetic thresholds: the S/S conical intersection and the S - S origin. H-atom speed distributions show marked changes in the relative contributions of dissociative pathways in both cases, compared to the absence of the nonresonant IR pulse.

View Article and Find Full Text PDF

A catalyst enhances a reaction pathway without itself being consumed or changed. Recently, there has been growing interest in the concept of "photon catalysis" in which nonresonant photons, which are neither absorbed nor scattered, promote reactions. The driving force behind this effect is the interaction between the strong electric field associated with a pulsed, focused laser and the polarizability of the reacting system.

View Article and Find Full Text PDF

Differential cross sections (DCSs) for the H + D2 → HD(v' = 4,  j') + D reaction at 3.26 eV collision energy have been measured using the photoloc technique, and the results have been compared with those from quantum and quasiclassical scattering calculations. The quantum mechanical DCSs are in good overall agreement with the experimental measurements.

View Article and Find Full Text PDF

Differential cross sections (DSCs) of the HD(', ') product for the reaction of H atoms with supersonically cooled D molecules in a small number of initial rotational states have been measured at a collision energy of 1.97 eV. These DCSs show an oscillatory pattern that results from interferences caused by different dynamical scattering mechanisms leading to products scattered into the same solid angle.

View Article and Find Full Text PDF

Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability.

View Article and Find Full Text PDF

Interferences are genuine quantum phenomena that appear whenever two seemingly distinct classical trajectories lead to the same outcome. They are common in elastic scattering but are seldom observable in chemical reactions. Here we report experimental measurements of the state-to-state angular distribution for the H + D2 reaction using the 'photoloc' technique.

View Article and Find Full Text PDF

We report rovibrationally selected differential cross sections (DCSs) of the benchmark reaction H + D2 → HD(v' = 3, j' = 4-10) + D at a collision energy of 3.26 eV, which exceeds the conical intersection of the H3 potential energy surface at 2.74 eV.

View Article and Find Full Text PDF

Modern computational methods have become so powerful for predicting the outcome for the H + H2 → H2 + H bimolecular exchange reaction that it might seem further experiments are not needed. Nevertheless, experiments have led the way to cause theorists to look more deeply into this simplest of all chemical reactions. The findings are less simple.

View Article and Find Full Text PDF

An attempt has been made to measure the theoretically predicted manifestation of a geometric phase in the differential cross section for the H + HD → HD(v' = 2, j' = 5) + H reaction at a center-of-mass collision energy of 1.44 eV (33.2 kcal∕mol).

View Article and Find Full Text PDF

The Photoloc technique has been employed to measure the state-resolved differential cross sections of the HD(v', j(')) product in the reaction H + D2 over a wide range of collision energies and internal states. The experimental results were compared with fully dimensional, time-dependent quantum mechanical calculations on the refined Boothroyd-Keogh-Martin-Peterson potential energy surface. We find nearly perfect agreement between theory and experiment for HD(v', j(')) product states with low to medium rotational excitation, e.

View Article and Find Full Text PDF

Take the shortcut: The synthesis of core-modified meso aryl hexaphyrins with an internal thiophene bridge is reported. Introduction of the thiophene bridge alters the electronic structure as well as the π-electron circuit, resulting in increases in singlet lifetime (τ(s)) and the two-photon absorption (TPA) cross-section. Furthermore, for the sulfur derivative, the internal bridging thiophene participates in a π-electron conjugation pathway.

View Article and Find Full Text PDF