Bacterial two-component systems (TCSs) consist of a sensor histidine kinase (HK) that perceives a specific signal, and a cognate response regulator (RR) that modulates the expression of target genes. Positive autoregulation improves TCS sensitivity to stimuli, but may trigger disproportionately large responses to weak signals, compromising bacterial fitness. Here, we combine experiments and mathematical modelling to reveal a general design that prevents such disproportionate responses: phosphorylated HKs (HK~Ps) can be sequestered by non-cognate RRs.
View Article and Find Full Text PDFRNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein-RNA interactions are still poorly derstood in contrast to protein-protein and protein-DNA interactions.
View Article and Find Full Text PDFGene regulation is an intricate phenomenon involving precise function of many macromolecular complexes. Molecular basis of this phenomenon is highly complex and cannot be fully understood using a single technique. Computational approaches can play a crucial role in overall understanding of functional and mechanistic features of a protein or an assembly.
View Article and Find Full Text PDFRibosomes play a critical role in maintaining cellular proteostasis. The binding of messenger RNA (mRNA) to the ribosome regulates kinetics of protein synthesis. To generate an understanding of the structural, mechanistic, and dynamical features of mRNA recognition in the ribosome, we have analysed mRNA-protein interactions through a structural comparison of the ribosomal complex in the presence and absence of mRNA.
View Article and Find Full Text PDFThe ongoing global pandemic of COVID-19 has brought life to almost a standstill with the implementation of lockdowns and social distancing as some of the preventive measures in the absence of any approved specific therapeutic interventions. To combat this crisis, research communities worldwide are falling back on the existing repertoire of approved/investigational drugs to probe into their anti-coronavirus properties. In this report, we describe our unique efforts in identifying potential drugs that could be repurposed against the main protease of SARS-CoV-2 (SARS-CoV-2 M).
View Article and Find Full Text PDF