Publications by authors named "Sneha A Kulkarni"

The incorporation of phenylethylammonium bromide (PEABr) into a fully inorganic CsPbBr perovskite framework led to the formation of mixed-dimensional perovskites, which enhanced the photoluminescence due to efficient energy funnelling and morphological improvements. With a PEABr : CsPbBr ratio of 0.8 : 1, PeLEDs with a current efficiency of 6.

View Article and Find Full Text PDF

The primary advantages of halide perovskites for light-emitting diodes (LEDs) are solution processability, direct band gap, good charge-carrier diffusion lengths, low trap density, and reasonable carrier mobility. The luminescence in 3 D halide perovskite thin films originates from free electron-hole bimolecular recombination. However, the slow bimolecular recombination rate is a fundamental performance limitation.

View Article and Find Full Text PDF

In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber.

View Article and Find Full Text PDF

A high open circuit voltage (V(OC)) close to 1.4 V under AM 1.5, 100 mW cm(-2) conditions is achieved when carbon nanotubes (CNTs) are used as a hole conductor in methyl ammonium lead bromide (MAPbBr3) perovskite solar cells.

View Article and Find Full Text PDF

Organic-inorganic metal halide perovskite solar cells were fabricated by laminating films of a carbon nanotube (CNT) network onto a CH3NH3PbI3 substrate as a hole collector, bypassing the energy-consuming vacuum process of metal deposition. In the absence of an organic hole-transporting material and metal contact, CH3NH3PbI3 and CNTs formed a solar cell with an efficiency of up to 6.87%.

View Article and Find Full Text PDF

We report a highly efficient solar cell based on a submicrometer (~0.6 μm) rutile TiO2 nanorod sensitized with CH3NH3PbI3 perovskite nanodots. Rutile nanorods were grown hydrothermally and their lengths were varied through the control of the reaction time.

View Article and Find Full Text PDF

Purpose: To investigate the effects of the particle size and surface coating on the cellular uptake of the polymeric nanoparticles for drug delivery across the physiological drug barrier with emphasis on the gastrointestinal (GI) barrier for oral chemotherapy and the blood-brain barrier (BBB) for imaging and therapy of brain cancer.

Methods: Various sizes of commercial fluorescent polystyrene nanoparticles (PS NPs) (viz 20 50, 100, 200 and 500 nm) were modified with the d-α-tocopheryl polyethylene glycol 1,000 succinate (vitamin E TPGS or TPGS). The size, surface charge and surface morphology of PS NPs before and after TPGS modification were characterized.

View Article and Find Full Text PDF

Nanoclay minerals play a promising role as additives in the liquid electrolyte to form a gel electrolyte for quasi-solid-state dye-sensitized solar cells, because of the high chemical stability, unique swelling capability, ion exchange capacity, and rheological properties of nanoclays. Here, we report the improved performance of a quasi-solid-state gel electrolyte that is made from a liquid electrolyte and synthetic nitrate-hydrotalcite nanoclay. Charge transport mechanisms in the gel electrolyte and nanoclay interactions with TiO(2)/electrolyte interface are discussed in detail.

View Article and Find Full Text PDF

Ruthenium-based C106 and organic D131 sensitizers have been judicially chosen for co-sensitization due to their complementary absorption properties and different molecular sizes. Co-sensitization yields a higher light-harvesting efficiency as well as better dye coverage to passivate the surface of TiO(2). The co-sensitized devices C106 + D131 showed significant enhancement in the performance (η = 11.

View Article and Find Full Text PDF

Aim: This work aimed to develop docetaxel-loaded D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) micelles for brain cancer chemotherapy by taking advantage of polyethylene glycol for its long half-life in circulation and vitamin E for its high cellular uptake.

Material & Methods: TPGS micelles containing docetaxel or coumarin-6 were prepared by the solvent casting method and the direct dissolution method at high, moderate and low drug-loading levels.

Results & Discussion: The particle size of the docetaxel-loaded TPGS micelles ranged between 12 and 14 nm.

View Article and Find Full Text PDF

The aim of this work was to develop a new type of D-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) coated multi-functional (theranostic) liposomes, which contain both docetaxel and quantum dots (QDs) for cancer imaging and therapy. Non-targeting and folate receptor targeting TPGS coated theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta potential, surface chemistry and drug encapsulation efficiency. MCF-7 breast cancer cells of folate receptor overexpression were employed as an in vitro model to assess cellular uptake and cytotoxicity of the drug and QDs loaded liposomes.

View Article and Find Full Text PDF

The aim of this work was to develop a drug delivery system of liposomes, which are coated with D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), a PEGylated vitamin E, with docetaxel as a model drug for enhanced treatment of brain tumour in comparison with the nude liposomes as well as with the so-called stealth liposomes, i.e. those coated with polyethylene glycol (PEG), which have been intensive investigated in the literature.

View Article and Find Full Text PDF

Aim: The aim of this work was to investigate the effect of surface modification of biodegradable nanoparticles on their cellular uptake, cytotoxicity and biodistribution for the delivery of imaging and therapeutic agents across the blood-brain barrier.

Materials & Methods: Coumarin-6- and docetaxel-encapsulated poly(D,L-lactide-co-glycolide) nanoparticles were prepared by a modified single emulsion method using polyvinyl alcohol or D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) as emulsifier. The nanoparticles' surface was further modified with surfactants such as polysorbate-80 (Tween® 80), poloxamer 188 (F68) and poloxamer 407 (F127) to enhance cellular uptake of the NPs.

View Article and Find Full Text PDF

Here we describe a novel method of preparing hydrophobic silica particles (100-150 nm; water contact angle of dropcasted film ranging from 60 degrees to 168 degrees) by surface functionalization using different alkyltrichlorosilanes. During their preparation, the molecular surface roughness is also concurrently engineered facilitating a change in both the surface chemical composition and the geometrical microstructure to generate hierarchical structures. The water contact angle has been measured on drop-cast film surface.

View Article and Find Full Text PDF

The passivating behavior of self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) on an n-type Si(100) electrode with and without a redox species like ferrocene in a polar non-aqueous medium has been investigated using techniques like contact angle measurements, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to understand the role of the monolayer. The electron-transfer behavior of ferrocene is found to be drastically affected by the presence of monolayer and the reasons for these are analyzed as a function of the change in resistance, dielectric thickness and coverage of the monolayer. Electrochemical impedance analysis in the presence of ferrocene gives the monolayer coverage as 0.

View Article and Find Full Text PDF