Publications by authors named "Sneh L Singla Pareek"

Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.

View Article and Find Full Text PDF

Background: Salinity stress affects plant growth, development, biomass, yield, as well as their survival. A series of signaling cascade is activated to cope the deleterious effect of salinity stress. Cytokinins are known for their regulatory roles from cell growth and expansion to abiotic stress signaling.

View Article and Find Full Text PDF

Plant two-component system (TCS) is crucial for phytohormone signalling, stress response, and circadian rhythms, yet the precise role of most of the family members in rice remain poorly understood. In this study, we investigated the function of OsPHP1, a pseudo-histidine phosphotransfer protein in rice, using a functional genomics approach. OsPHP1 is localised in the nucleus and cytosol, and it exhibits strong interactions with all sensory histidine kinase proteins (OsHK1-6) and cytokinin catabolism genes.

View Article and Find Full Text PDF
Article Synopsis
  • Developing rice varieties with shorter life cycles is essential for sustainable agriculture, helping to reduce water and fertilizer use while allowing for earlier harvests.
  • The gene GHD7 is crucial for regulating flowering time in rice and has shown potential in increasing yield when overexpressed in the IR64 rice variety, resulting in a 66% increase in grain number and accelerated flowering.
  • The enhanced rice plants also display better resilience to drought and salinity, highlighting the importance of genetic manipulation in improving rice productivity amid climate change.
View Article and Find Full Text PDF

The genus Oryza is of utmost importance to human civilization as two of its species became agronomically productive and widely cultivated, and also because wild rice is a treasure trove of beneficial alleles that can be used for crop improvement. Most of the wild rice genotypes are known for their stress tolerance several times more than the domesticated rice varieties. In this study, we aimed to carry out an exhaustive genomic survey to identify glyoxalase I (GLYI) and glyoxalase II (GLYII) genes across the 11 rice genomes sequenced so far.

View Article and Find Full Text PDF

Saffron stigma, derived from Crocus sativus L., has long been revered in global traditional medicine and continues to hold significant market value. However, despite the extensive focus on saffron stigma, the therapeutic potential of other floral components remains underexplored, primarily due to limited insights into their complex molecular architectures and chemical diversity.

View Article and Find Full Text PDF

Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids, such as lysine. The activity of dihydrodipicolinate synthase (DHDPS) enzyme is crucial for lysine production in higher plants, but it is highly regulated through a feedback inhibition by its end product lysine, leading to its limited activity in the grain and resulting in low lysine accumulation.

View Article and Find Full Text PDF

The Cystathionine-β-Synthase (CBS) domain-containing proteins (CDCPs) constitute a functionally diverse protein superfamily, sharing an evolutionary conserved CBS domain either in pair or quad. Rice genome (Oryza sativa subsp. indica) encodes 42 CDCPs; their functions remain largely unexplored.

View Article and Find Full Text PDF

Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Meristem activity is crucial for normal plant growth and adaptation to environmental stresses, with cytokinin playing a key role in regulating this process.
  • The study focuses on the protein LONELY GUY (LOG), which activates cytokinin and shows that overexpressing OsLOG in rice can significantly improve growth, biomass, and grain yield even under stress conditions like drought and salinity.
  • OsLOG overexpression leads to better stress resilience by reducing harmful compounds and enhancing antioxidant activities, suggesting its potential for boosting crop yield and promoting sustainable agriculture.
View Article and Find Full Text PDF

Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration.

View Article and Find Full Text PDF

OsRR26 is a cytokinin-responsive response regulator that promotes phytohormone-mediated ROS accumulation in rice roots, regulates seedling growth, spikelet fertility, awn development, represses NADPH oxidases, and negatively affects salinity tolerance. Plant two-component systems (TCS) play a pivotal role in phytohormone signaling, stress responses, and circadian rhythm. However, a significant knowledge gap exists regarding TCS in rice.

View Article and Find Full Text PDF

Overexpression of OsDJ-1C in rice improves root architecture, photosynthesis, yield and abiotic stress tolerance through modulating methylglyoxal levels, antioxidant defense, and redox homeostasis. Exposure to abiotic stresses leads to elevated methylglyoxal (MG) levels in plants, impacting seed germination and root growth. In response, the activation of NADPH-dependent aldo-keto reductase and glutathione (GSH)-dependent glyoxalase enzymes helps to regulate MG levels and reduce its toxic effects.

View Article and Find Full Text PDF

Abiotic stresses such as heat, drought and submergence are major threats to global food security. Despite simultaneous or sequential occurrence of these stresses being recurrent under field conditions, crop response to such stress combinations is poorly understood. Rice is a staple food crop for the majority of human beings.

View Article and Find Full Text PDF
Article Synopsis
  • Stress in plants leads to harmful levels of reactive oxygen species (ROS) and carbonyl compounds, which can hinder growth and cause cellular toxicity.
  • It's important to balance the production and breakdown of these reactive species to maintain normal plant functions, and detoxification mechanisms are key for managing stress impacts.
  • Root-associated microbes enhance plants' stress tolerance by improving antioxidant responses and maintaining redox homeostasis, thereby helping plants cope with stress more effectively.
View Article and Find Full Text PDF

Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5°C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield.

View Article and Find Full Text PDF

Pokkali is a strong representation of how stress-tolerant genotypes have evolved due to natural selection pressure. Numerous omics-based investigations have indicated different categories of stress-related genes and proteins, possibly contributing to salinity tolerance in this wild rice. However, a comprehensive study towards understanding the role of long-noncoding RNAs (lncRNAs) in the salinity response of Pokkali has not been done to date.

View Article and Find Full Text PDF

Lactate/malate dehydrogenases (Ldh/Maldh) are ubiquitous enzymes involved in the central metabolic pathway of plants and animals. The role of malate dehydrogenases in the plant system is very well documented. However, the role of its homolog L-lactate dehydrogenases still remains elusive.

View Article and Find Full Text PDF

The flavin monooxygenase (FMO) enzyme was discovered in mammalian liver cells that convert a carcinogenic compound, N-N'-dimethylaniline, into a non-carcinogenic compound, N-oxide. Since then, many FMOs have been reported in animal systems for their primary role in the detoxification of xenobiotic compounds. In plants, this family has diverged to perform varied functions like pathogen defense, auxin biosynthesis, and S-oxygenation of compounds.

View Article and Find Full Text PDF

Unlabelled: Rice is the staple food for more than 3.5 billion people worldwide. The sensitivity of rice to heat, drought, and salinity is well documented.

View Article and Find Full Text PDF
Article Synopsis
  • DTH8 is a gene from the rice variety Oryza sativa L. cv IR64 that impacts rice yield, heading date, and stress tolerance, particularly under drought and salinity conditions.
  • This gene regulates the expression of several key genes involved in flowering and growth, enhancing traits such as early flowering and increased tiller numbers.
  • Transgenic plants with DTH8 showed better stress tolerance and yield retention compared to wild-type plants, indicating its role as a positive regulator in adapting rice crops to various environmental challenges.
View Article and Find Full Text PDF

Methylglyoxal (MG) is a metabolically generated highly cytotoxic compound that accumulates in all living organisms, from Escherichia coli to humans, under stress conditions. To detoxify MG, nature has evolved reduced glutathione (GSH)-dependent glyoxalase and NADPH-dependent aldo-keto reductase systems. But both GSH and NADPH have been reported to be limiting in plants under stress conditions, and thus detoxification might not be performed efficiently.

View Article and Find Full Text PDF