Phosphatidylinositol 4,5-bisphosphate 3-kinases (PI3K) are a family of kinases whose activity affects pathways needed for basic cell functions. As a result, PI3K is one of the most mutated genes in all human cancers and serves as an ideal therapeutic target for cancer treatment. Expanding on work done by other groups we improved protein yield to produce stable and pure protein using a variety of modifications including improved solubility tag, novel expression modalities, and optimized purification protocol and buffer.
View Article and Find Full Text PDFThe diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO.
View Article and Find Full Text PDFUnicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These "histophages" feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries.
View Article and Find Full Text PDFBackground: SGN-B7H4V is a novel investigational vedotin antibody-drug conjugate (ADC) comprising a B7-H4-directed human monoclonal antibody conjugated to the cytotoxic payload monomethyl auristatin E (MMAE) via a protease-cleavable maleimidocaproyl valine citrulline (mc-vc) linker. This vedotin linker-payload system has been clinically validated in multiple Food and Drug Administration approved agents including brentuximab vedotin, enfortumab vedotin, and tisotumab vedotin. B7-H4 is an immune checkpoint ligand with elevated expression on a variety of solid tumors, including breast, ovarian, and endometrial tumors, and limited normal tissue expression.
View Article and Find Full Text PDFUnicellular ciliates like are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These 'histophages' feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries.
View Article and Find Full Text PDFIntegrin beta-6, a component of the heterodimeric adhesion receptor alpha-v/beta-6, is overexpressed in numerous solid tumors. Its expression has been shown by multiple investigators to be a negative prognostic indicator in diverse cancers including colorectal, non-small cell lung, gastric, and cervical. We developed SGN-B6A as an antibody-drug conjugate (ADC) directed to integrin beta-6 to deliver the clinically validated payload monomethyl auristatin E (MMAE) to cancer cells.
View Article and Find Full Text PDFOxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4) have emerged as potentially druggable targets in antiviral and precision cancer drug development. Multiple structurally diverse small molecules function through targeting the OSBP/ORP family of proteins, including the antiviral steroidal compounds OSW-1 and T-00127-HEV2. Here, the structure-activity relationships of oxysterols and related compound binding to human OSBP and ORP4 are characterized.
View Article and Find Full Text PDFSHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2.
View Article and Find Full Text PDFCoevolution with predators leads to the use of low-risk habitats by many prey species, which promotes survival during early developmental phases. These nurseries are valued by conservation and management agencies because of their contributions to adult populations. However, the physical and geographic characteristics, like shallow depths and isolation from other marine habitats, that restrict access to predators and thereby reduce risk to juvenile animals can also limit scientific research.
View Article and Find Full Text PDFThe SHOC2-MRAS-PPP1CA (SMP) complex is a holoenzyme that plays a vital role in the MAP kinase signaling pathway. Previous attempts to produce this challenging three-protein complex have relied on co-infection with multiple viruses and the use of affinity tags to attempt to isolate functional recombinant protein complexes. Leucine-rich repeat containing proteins have been historically challenging to express, and we hypothesized that co-expression of appropriate chaperones may be necessary for optimal production.
View Article and Find Full Text PDFType-II toxin-antitoxin (TA) systems are comprised of two tightly interacting proteins, and operons encoding these systems have been identified throughout the genomes of bacteria. In contrast to secretion system effector-immunity pairs, TA systems must remain paired to protect the host cell from toxicity. Continual depletion of the antitoxin results in a shorter half-life than that of the toxin, though it is unclear if antitoxins can be effectively degraded when complexed with toxins.
View Article and Find Full Text PDFPrevious work employing five SARS-CoV-2 spike protein receptor-binding domain (RBD) constructs, comprising versions originally developed by Mt. Sinai or the Ragon Institute and later optimized in-house, revealed potential heterogeneity which led to questions regarding variable seropositivity assay performance. Each construct was subjected to N-deglycosylation and subsequent intact mass analysis, revealing significant deviations from predicted theoretical mass for all five proteins.
View Article and Find Full Text PDFAsymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates in the United States and elsewhere. To address this, we analyzed seropositivity in 9089 adults in the United States who had not been diagnosed previously with COVID-19. Individuals with characteristics that reflected the U.
View Article and Find Full Text PDFIn order to properly understand the spread of SARS-CoV-2 infection and development of humoral immunity, researchers have evaluated the presence of serum antibodies of people worldwide experiencing the pandemic. These studies rely on the use of recombinant proteins from the viral genome in order to identify serum antibodies that recognize SARS-CoV-2 epitopes. Here, we discuss the cross-reactivity potential of SARS-CoV-2 antibodies with the full spike proteins of four other betacoronaviruses that cause disease in humans, MERS-CoV, SARS-CoV, HCoV-OC43, and HCoV-HKU1.
View Article and Find Full Text PDFAsymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates. To address this, we analyzed seropositivity in US adults who have not previously been diagnosed with COVID-19. Individuals with characteristics that reflect the US population ( = 11,382) and who had not previously been diagnosed with COVID-19 were selected by quota sampling from 241,424 volunteers (ClinicalTrials.
View Article and Find Full Text PDFThe extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is key to avoiding medically costly diagnostic errors, as well as to assuring properly informed public health decisions. Here, we present an optimized ELISA-based serology protocol, from antigen production to data analyses, that helps define thresholds for IgG and IgM seropositivity with high specificities.
View Article and Find Full Text PDFWe have developed a highly active and well-tolerated camptothecin (CPT) drug-linker designed for antibody-mediated drug delivery in which the lead molecule consists of a 7-aminomethyl-10,11-methylenedioxy CPT (CPT1) derivative payload attached to a novel hydrophilic protease-cleavable valine-lysine-glycine tripeptide linker. A defined polyethylene glycol stretcher was included to improve the properties of the drug-linker, facilitating high antibody-drug conjugate (ADC) drug loading, while reducing the propensity for aggregation. A CPT1 ADC with 8 drug-linkers/mAb displayed a pharmacokinetic profile coincident with parental unconjugated antibody and had high serum stability.
View Article and Find Full Text PDFThe receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes.
View Article and Find Full Text PDFThe receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes.
View Article and Find Full Text PDFIn order to properly understand the spread of SARS-CoV-2 infection and development of humoral immunity, researchers have evaluated the presence of serum antibodies of people worldwide experiencing the pandemic. These studies rely on the use of recombinant proteins from the viral genome in order to identify serum antibodies that recognize SARS-CoV-2 epitopes. Here, we discuss the cross-reactivity potential of SARS-CoV-2 antibodies with the full spike proteins of four other Betacoronaviruses that cause disease in humans, MERS-CoV, SARS-CoV, HCoV-OC43, and HCoV-HKU1.
View Article and Find Full Text PDFThe extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is a key tool to understanding the spread of infection, immunity against the virus, and correlates of protection. Limited validation and testing of serology assays used for serosurveys can lead to unreliable or misleading data, and clinical testing using such unvalidated assays can lead to medically costly diagnostic errors and improperly informed public health decisions.
View Article and Find Full Text PDFThe SARS-CoV-2 spike trimer is the primary antigen for several serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Until stable cell lines are developed to increase the titer of this secreted protein in mammalian cell culture, the low yield of spike protein produced from transient transfection of HEK293 cells will be a limiting factor for these assays. To improve the yield of spike protein and support the high demand for antigens in serology assays, we investigated several recombinant protein expression variables by altering the incubation temperature, harvest time, chromatography strategy, and final protein manipulation.
View Article and Find Full Text PDFThe SARS-CoV-2 spike trimer is the primary antigen for several serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Until stable cell lines are developed to increase the titer of this secreted protein in mammalian cell culture, the low yield of spike protein produced from transient transfection of HEK293 cells will be a limiting factor for these assays. To improve the yield of spike protein and support the high demand for antigens in serology assays, we investigated several recombinant protein expression variables by altering the incubation temperature, harvest time, chromatography strategy, and final protein manipulation.
View Article and Find Full Text PDFMany genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus.
View Article and Find Full Text PDF