The diagnosis, classification, and management of cancer are traditionally dictated by the site of tumor origin, for example, breast or lung, and by specific histologic subtypes of site-of-origin cancers (e.g., non-small cell versus small cell lung cancer).
View Article and Find Full Text PDFVon Hippel-Lindau disease, Cowden syndrome, and Proteus syndrome are cancer syndromes which affect multiple organs and lead to significant decline in quality of life in affected patients. These syndromes are rare and typically affect the adolescent and young adult population, resulting in greater cumulative years of life lost. Improved understanding of the underpinnings of the genetic pathways underlying these syndromes and the rapid evolution of targeted therapies in general have made it possible to develop therapeutic options for these patients and other genetic cancer syndromes.
View Article and Find Full Text PDFWith the advent of genomics-based treatment in recent years, the use of targeted therapies in the treatment of various malignancies has increased exponentially. Though much data is available regarding the efficacy of targeted therapies for common malignancies, genetic cancer syndromes remain a somewhat unexplored topic with comparatively less published literature. This review seeks to characterize targeted therapy options for the following genetic cancer syndromes: Fanconi anemia, inherited medullary thyroid cancer, tuberous sclerosis, and RASopathies.
View Article and Find Full Text PDFThe increasing scope and availability of genetic testing options for patients suffering from cancer has raised questions about how to use results of molecular diagnostics to inform patient care. For some biomarkers (e.g.
View Article and Find Full Text PDFCancer genetics has rapidly evolved in the last two decades. Understanding and exploring the several genetic pathways in the cancer cell is the foundation of targeted therapy. Several genomic aberrations have been identified and their role in carcinogenesis is being explored.
View Article and Find Full Text PDFHereditary cancer syndromes are well known in the oncology community, typically affecting children, adolescents, and young adults and thereby resulting in great cumulative morbidity and mortality. These syndromes often lag behind their de novo counterparts in the development of approved novel treatment options due to their rarity in the general population. Recent work has allowed the identification of molecular aberrations and associated targeted therapies that may effectively treat these conditions.
View Article and Find Full Text PDFThe remarkably heterogeneous nature of lung cancer has become more apparent over the last decade. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. The discovery of multiple molecular mechanisms underlying the development, progression, and prognosis of lung cancer, however, has created new opportunities for targeted therapy and improved outcome.
View Article and Find Full Text PDFWhile advanced melanoma remains one of the most challenging cancers, recent developments in our understanding of the molecular drivers of this disease have uncovered exciting opportunities to guide personalized therapeutic decisions. Genetic analyses of melanoma have uncovered several key molecular pathways that are involved in disease onset and progression, as well as prognosis. These advances now make it possible to create a "Molecular Disease Model" (MDM) for melanoma that classifies individual tumors into molecular subtypes (in contrast to traditional histological subtypes), with proposed treatment guidelines for each subtype including specific assays, drugs, and clinical trials.
View Article and Find Full Text PDFThe centriole, organizer of the centrosome, duplicates by assembling a unique daughter identical to itself in overall organization and length. The centriole is a cylindrical structure composed of nine sets of microtubules and is thus predicted to have nine-fold symmetry. During duplication, a daughter lacking discrete microtubular organization first appears off the wall of the mother centriole.
View Article and Find Full Text PDFWhen mitosis is bypassed, as in some cancer cells or in natural endocycles, sister chromosomes remain paired and produce four-stranded diplochromosomes or polytene chromosomes. Cyclin/Cdk1 inactivation blocks entry into mitosis and can reset G2 cells to G1, allowing another round of replication. Reciprocally, persistent expression of Cyclin A/Cdk1 or Cyclin E/Cdk2 blocks Drosophila endocycles.
View Article and Find Full Text PDF