Much of the complexity of the eukaryotic cell transcriptome is due to the alternative splicing of mRNA. However, knowledge on how transcriptome complexity is translated into functional complexity remains limited. For example, although different isoforms of a gene may show distinct temporal and spatial expression patterns, it is largely unknown whether these isoforms encode proteins with distinct functions matching their expression pattern.
View Article and Find Full Text PDFHereditary retinal dystrophy is clinically defined as a broad group of chronic and progressive disorders that affect visual function by causing photoreceptor degeneration. Previously, we identified mutations in the gene encoding receptor expression-enhancing protein 6 (REEP6), in individuals with autosomal recessive retinitis pigmentosa (RP), the most common form of inherited retinal dystrophy. One individual was molecularly diagnosed with biallelic REEP6 mutations, a missense mutation over a frameshift mutation.
View Article and Find Full Text PDFNMNAT1 (nicotinamide mononucleotide adenylyltransferase 1) encodes a rate-limiting enzyme that catalyzes the biosynthesis of NAD and plays a role in neuroprotection. Mutations in NMNAT1 have been identified to cause a recessive, non-syndromic early form of blindness genetically defined as Leber Congenital Amaurosis 9 (LCA9). One of the most common alleles reported so far in NMNAT1 is the c.
View Article and Find Full Text PDF