Publications by authors named "Smolenski R"

Objective: Endothelin plays a role in the regulation of basal coronary tone. We hypothesized that low coronary reflow and reduced cardiac function after prolonged ischemia may be due to increased release of endogenous endothelin.

Methods: Using an isolated perfused rat heart, we examined the effect of the addition of various endothelin antagonists during reperfusion after 4 hours of cardioplegic arrest at 4 degrees C.

View Article and Find Full Text PDF

Background: Interleukin-1 (IL-1) plays a role in mediating acute inflammation during ischemia-reperfusion (I/R) injury in the heart, which leads to both necrosis and apoptosis of cardiomyocytes. IL-1 receptor antagonist (IL-1ra) is known to inhibit the effects of IL-1alpha and IL-1beta, resulting in attenuated inflammatory injury, and to protect cells from IL-1beta-induced apoptosis in vitro. We hypothesized that IL-1ra overexpression would provide cardioprotection by reducing inflammation-mediated myocardial damage including apoptosis after I/R injury in vivo.

View Article and Find Full Text PDF

Background: Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.

Methods And Results: Hemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats.

View Article and Find Full Text PDF

Background: Adenosine (Ado) triggers numerous protective mechanisms in the heart that may attenuate ischemia-reperfusion injury in cardiac grafts. We aimed to establish whether sustained increase in endogenous Ado production by the combined application of Ado metabolism inhibitors and nucleotide precursors attenuates reperfusion injury in transplanted hearts.

Methods And Results: Rat hearts were collected after the infusion of St Thomas' Hospital cardioplegic solution, stored at 4 degrees C for 4 hours, and heterotopically transplanted into the abdomen of recipient rats.

View Article and Find Full Text PDF

Background: Skeletal myoblast transplantation is promising for the treatment of end-stage heart failure. Direct intramyocardial injection is useful for local cell delivery but may not be effective in global dissemination of cells into the heart, which would be advantageous in treating generalized cardiac dysfunction as in dilated cardiomyopathy. We hypothesized that intracoronary infusion of myoblasts would disseminate cells more effectively, leading to functional improvement in global heart failure.

View Article and Find Full Text PDF

Background: Vascular endothelial growth factor (VEGF) is a promising reagent for inducing myocardial angiogenesis. Skeletal myoblast transplantation has been shown to improve cardiac function in chronic heart failure models by regenerating muscle. We hypothesized that transplantation of VEGF-expressing myoblasts could effectively treat acute myocardial infarction by providing VEGF-induced cardioprotection through vasodilatation in the early phase, followed by angiogenesis effects in salvaging ischemic host myocardium combined with the functional benefits of newly formed, skeletal myoblast-derived muscle in the later phase.

View Article and Find Full Text PDF

Objective: Both superoxide dismutase (SOD), a free radical scavenger, and nitric oxide (NO), a vasodilator with anti-inflammatory properties, have been shown to protect the myocardium from reperfusion injury. They are known to interact in vivo, the influence of which on myocardial protection has not been studied.

Methods: Four groups of rats (n=7, per group) were subjected to experimental infarction following injections into the anterior wall of the left ventricle with adenoviral vector encoding beta-galactosidase (group A), eNOS (group B), Mn-SOD (group C) and both eNOS and MnSOD (group D).

View Article and Find Full Text PDF

Objectives: Cardioplegic arrest during cardiac surgery induces severe abnormalities of the pyruvate metabolism, which may affect functional recovery of the heart. We aimed to evaluate the effect of pyruvate and dichloroacetate administration during reperfusion on recovery of mechanical function and energy metabolism in the heart subjected to prolonged cardioplegic arrest.

Methods: Four groups of rat hearts perfused in working mode were subjected to cardioplegic arrest (St.

View Article and Find Full Text PDF

Carnitine and its derivatives have recently been shown to protect cardiac metabolism and function in ischemic heart disease and other clinical conditions of myocardial ischemia. Potential mechanisms of this effect include an increase in glucose metabolism, a reduction of toxic effects of long-chain acyl-CoA and acyl-carnitine in myocytes, an increase in coronary blood flow and anti-arrhythmic effect. It has also been shown that propionyl-L-carnitine which penetrates faster than carnitine into myocytes is effective in inhibiting production of free radicals.

View Article and Find Full Text PDF

Background: Myocardial content of the 70-kd heat shock protein has been found to correlate with improved cardiac recovery after ischemia, but the mechanisms and conditions that regulate its level, particularly under clinical conditions, are unclear. The aim of this study was to assess the effect of hypothermic cardioplegic arrest and reperfusion on the expression of 70-kd heat shock protein in a protocol mimicking conditions of preservation for cardiac transplantation.

Methods: Heat-shocked and control hearts were subjected to 4 hours of cardioplegic arrest and global ischemia at 4 degrees C and then to 20 minutes of reperfusion.

View Article and Find Full Text PDF

Hyperthermic stress is known to protect against myocardial dysfunction after ischemia-reperfusion injury. It is unclear however, what energetic mechanisms are affected by the molecular adaptation to heat stress. We hypothesized that mild hyperthermic stress can increase mitochondrial respiratory enzyme activity, affording protection to mitochondrial energetics during prolonged cardiac preservation for transplantation.

View Article and Find Full Text PDF

The profile and normal concentrations of nucleotide metabolites in human saliva and reproducibility of these determinations were analyzed. Samples of human saliva collected from healthy individuals at weekly intervals, were deproteinized and analysed for the content of adenine nucleotides and their metabolites by reversed-phase HPLC. Initial ATP, hypoxanthine and uric acid concentrations were 0.

View Article and Find Full Text PDF

Recently, we have shown that erythrocytes obtained from patients with chronic renal failure (CRF) exhibited an increased rate of ATP formation from adenine as a substrate. Thus, we concluded that this process was in part responsible for the increase of adenine nucleotide concentration in uremic erythrocytes. There cannot be excluded however, that a decreased rate of adenylate degradation is an additional mechanism responsible for the elevated ATP concentration.

View Article and Find Full Text PDF

Background: Elevated purine nucleotide pool (mainly ATP) in erythrocytes of patients with chronic renal failure (CRF) is a known phenomenon, however the mechanism responsible for this abnormality is far from being clear. We hypothesize that the increased rate of adenine incorporation into adenine nucleotide pool is responsible for the elevated level of ATP in uremic erythrocytes.

Methods: In chronically uremic patients we evaluated using HPLC technique: (a) plasma adenine concentration; (b) the rate of adenine incorporation into adenine nucleotide pool in uremic erythrocytes.

View Article and Find Full Text PDF

Background: Cell transplantation is a promising strategy to treat end-stage heart failure. At present, a popular method to deliver cells into the heart is direct intramuscular injection. This method, however, may not be efficient in spreading cells globally into the myocardium.

View Article and Find Full Text PDF

Background: Heat shock protein 70 (HSP70) gene transfection has been shown to enhance myocardial tolerance after normothermic ischemia-reperfusion. We investigated the effect of HSP70 gene transfection on mechanical and endothelial function in a protocol mimicking clinical heart preservation.

Methods And Results: Rat hearts were infused ex vivo with Hemagglutinating Virus of Japan-liposome complex containing HSP70 gene (HSP, n=8) or no gene (CON, n=8), and heterotopically transplanted into recipient rats.

View Article and Find Full Text PDF

Background: Graft survival after skeletal myoblast transplantation is affected by various pathological processes caused by environmental stress. Heat shock is known to afford protection of several aspects of cell metabolism and function. We hypothesized that prior heat shock treatment of graft cells would improve their survival after cell transplantation.

View Article and Find Full Text PDF

Galactosamine (GalN), a well-known hepatotoxin that depletes the cellular pool of uracil nucleotides, was previously shown to have greater impact on the inhibition of protein synthesis in hepatocytes of old rats as compared with young animals (Kmieć 1994, Ann. N.Y.

View Article and Find Full Text PDF