Patients with long-standing diabetes have a high risk for cardiac complications that is exacerbated by increased reactive oxygen species (ROS) production. We found that feeding cyanocobalamin (B12), a scavenger of superoxide, not only prevented but reversed signs of cardiomyopathy in type 1 diabetic Elmo1 Ins2 mice. ROS reductions in plasma and hearts were comparable to those in mice treated with other antioxidants, N-acetyl-L-cysteine or tempol, but B12 produced better cardioprotective effects.
View Article and Find Full Text PDFEngulfment and cell motility protein 1 (ELMO1) is part of a guanine nucleotide exchange factor for Ras-related C3 botulinum toxin substrate (Rac), and ELMO1 polymorphisms were identified to be associated with diabetic nephropathy in genome-wide association studies. We generated a set of Akita Ins2C96Y diabetic mice having 5 graded cardiac mRNA levels of ELMO1 from 30% to 200% of normal and found that severe dilated cardiomyopathy develops in ELMO1-hypermorphic mice independent of renal function at age 16 weeks, whereas ELMO1-hypomorphic mice were completely protected. As ELMO1 expression increased, reactive oxygen species indicators, dissociation of the intercalated disc, mitochondrial fragmentation/dysfunction, cleaved caspase-3 levels, and actin polymerization increased in hearts from Akita mice.
View Article and Find Full Text PDFArne Tiselius' moving boundary electrophoresis method was still in general use in 1951 when this personal history begins, although zonal electrophoresis with a variety of supporting media (e.g., filter paper or starch grains) was beginning to replace it.
View Article and Find Full Text PDFPatients born with congenital heart defects frequently encounter arrhythmias due to defects in the ventricular conduction system (VCS) development. Although recent studies identified transcriptional networks essential for the heart development, there is scant information on the mechanisms regulating VCS development. Based on the association of atrial natriuretic peptide (ANP) expression with VCS forming regions, it was reasoned that ANP could play a critical role in differentiation of cardiac progenitor cells (CPCs) and cardiomyocytes (CMs) toward a VCS cell lineage.
View Article and Find Full Text PDFEndothelin-1 (ET-1) is implicated in the pathophysiology of preeclampsia. An association between an gene polymorphism with high ET-1 and preeclampsia was reported in humans, but their cause and effect relationships have not been defined. We examined the pregnancy effects in mice with a modified allele that increases mRNA stability and thus ET-1 production.
View Article and Find Full Text PDFVascular resistance is a major determinant of BP and is controlled, in large part, by RhoA-dependent smooth muscle cell (SMC) contraction within small peripheral arterioles and previous studies from our lab indicate that GRAF3 is a critical regulator of RhoA in vascular SMC. The elevated contractile responses we observed in GRAF3 deficient vessels coupled with the hypertensive phenotype provided a mechanistic link for the hypertensive locus recently identified within the GRAF3 gene. On the basis of our previous findings that the RhoA signaling axis also controls SMC contractile gene expression and that GRAF3 expression was itself controlled by this pathway, we postulated that GRAF3 serves as an important counter-regulator of SMC phenotype.
View Article and Find Full Text PDFIn this study, we describe the experiments determining whether coating gold nanoparticles with tetraethylene glycol (TEG) provides pharmacologically relevant advantages, such as increased serum half-life and resistance to protein adsorption. Monodisperse TEG-coated, NaBH-reduced gold nanoparticles with a hydrodynamic size comparable to albumin were synthesized by reducing gold chloride with NaBH under alkaline conditions in the presence of TEG-SH. The particles were characterized by gel electrophoresis, column chromatography, and transmission electron microscopy.
View Article and Find Full Text PDFHow the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive.
View Article and Find Full Text PDFGlaucomas are neurodegenerative diseases that cause vision loss, especially in the elderly. The mechanisms initiating glaucoma and driving neuronal vulnerability during normal aging are unknown. Studying glaucoma-prone mice, we show that mitochondrial abnormalities are an early driver of neuronal dysfunction, occurring before detectable degeneration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Preeclampsia (PE) complicates ∼5% of human pregnancies and is one of the leading causes of pregnancy-related maternal deaths. The only definitive treatment, induced delivery, invariably results in prematurity, and in severe early-onset cases may lead to fetal death. Many currently available antihypertensive drugs are teratogenic and therefore precluded from use.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Increased levels of a cleaved form of prolactin (molecular weight 16 kDa) have been associated with preeclampsia. To study the effects of prolactin on blood pressure (BP), we generated male mice with a single-copy transgene (Tg; inserted into the hypoxanthine-guanine phosphoribosyltransferase locus) that enables inducible hepatic production of prolactin and its cleavage product. The Tg is driven by the indole-3-carbinol (I3C)-inducible rat cytochrome P450 1A1 promoter.
View Article and Find Full Text PDFReducing dilute aqueous HAuCl4 with sodium thiocyanate (NaSCN) under alkaline conditions produces 2 to 3 nm diameter nanoparticles. Stable grape-like oligomeric clusters of these yellow nanoparticles of narrow size distribution are synthesized under ambient conditions via two methods. The delay-time method controls the number of subunits in the oligoclusters by varying the time between the addition of HAuCl₄ to alkaline solution and the subsequent addition of reducing agent, NaSCN.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2016
Human genome-wide association studies have demonstrated that polymorphisms in the engulfment and cell motility protein 1 gene (ELMO1) are strongly associated with susceptibility to diabetic nephropathy. However, proof of causation is lacking. To test whether modest changes in its expression alter the severity of the renal phenotype in diabetic mice, we have generated mice that are type 1 diabetic because they have the Ins2(Akita) gene, and also have genetically graded expression of Elmo1 in all tissues ranging in five steps from ∼30% to ∼200% normal.
View Article and Find Full Text PDFTransforming growth factor-β1 (TGF-β1) is established to be involved in the pathogenesis of diabetic nephropathy. The diabetic milieu enhances oxidative stress and induces the expression of TGF-β1. TGF-β1 promotes cell hypertrophy and extracellular matrix accumulation in the mesangium, which decreases glomerular filtration rate and leads to chronic renal failure.
View Article and Find Full Text PDFNephropathy develops in many but not all patients with long-standing type 1 diabetes. Substantial efforts to identify genotypic differences explaining this differential susceptibility have been made, with limited success. Here, we show that the expression of the transforming growth factor β1 gene (Tgfb1) affects the development of diabetic nephropathy in mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2015
We have generated low-expressing and high-expressing endothelin-1 genes (L and H) and have bred mice with four levels of expression: L/L, ∼20%; L/+, ∼65%; +/+ (wild type), 100%; and H/+, ∼350%. The hypomorphic L allele can be spatiotemporally switched to the hypermorphic H allele by Cre-loxP recombination. Young adult L/L and L/+ mice have dilated cardiomyopathy, hypertension, and increased plasma volumes, together with increased ventricular superoxide levels, increased matrix metalloproteinase 9 (Mmp9) expression, and reduced ventricular stiffness.
View Article and Find Full Text PDFProfessor Oliver Smithies is the Weatherspoon Eminent Distinguished Professor of Pathology and Laboratory Medicine at the University of North Carolina, Chapel Hill. Along with Mario Capecchi and Martin Evans, Oliver was awarded the Nobel Prize in Medicine in Physiology or Medicine in 2007 for his contributions to the development of gene targeting using homologous recombination in embryonic stem cells. This technique has had an immense impact on biomedical research over the past two decades.
View Article and Find Full Text PDFPurpose Of Review: It is well established that blocking the renin-angiotensin-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of the RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here, we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone.
View Article and Find Full Text PDFReducing dilute aqueous HAuCl4 with NaSCN under alkaline conditions produces 2-3 nm diameter yellow nanoparticles without the addition of extraneous capping agents. We here describe two very simple methods for producing highly stable oligomeric grape-like clusters (oligoclusters) of these small nanoparticles. The oligoclusters have well-controlled diameters ranging from ∼5 to ∼30 nm, depending mainly on the number of subunits in the cluster.
View Article and Find Full Text PDFAlthough human association studies suggest a link between polymorphisms in the gene encoding transforming growth factor (TGF) β1 and differing blood pressure levels, a causative mechanism for this correlation remains elusive. Recently we have generated a series of mice with graded expression of TGFβ1, ranging from approximately 10% to 300% compared to normal. We have found that blood pressure and plasma volume are negatively regulated by TGFβ1.
View Article and Find Full Text PDFAlthough hypertension is a worldwide health issue, an incomplete understanding of its aetiology has hindered our ability to treat this complex disease. Here we identify arhgap42 (also known as GRAF3) as a Rho-specific GAP expressed specifically in smooth muscle cells (SMCs) in mice and humans. We show that GRAF3-deficient mice exhibit significant hypertension and increased pressor responses to angiotensin II and endothelin-1; these effects are prevented by treatment with the Rho-kinase inhibitor, Y27632.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2013
To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor β1 (TGFβ1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.
View Article and Find Full Text PDF