Publications by authors named "Smita Mathew"

Matrix metalloproteinases (MMPs) are a superfamily of Zn(2+)-dependent proteases that are capable of cleaving the proteinaceous component of the extracellular matrix (ECM). The ECM is a critical medium for cell-cell interactions and can also directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM.

View Article and Find Full Text PDF

SUMO proteins are small ubiquitin-related modifiers. All SUMOs are synthesized as propeptides that are post-translationally cleaved prior to conjugation. After processing, SUMOs become covalently conjugated to cellular targets through a pathway that is similar to ubiquitination.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) have been extensively studied because of their functional attributes in development and diseases. However, relatively few in vivo functional studies have been reported on the roles of MMPs in postembryonic organ development. Amphibian metamorphosis is a unique model for studying MMP function during vertebrate development because of its dependence on thyroid hormone (T3) and the ability to easily manipulate this process with exogenous T3.

View Article and Find Full Text PDF

Background: Matrix metalloproteinases (MMPs) are members of the superfamily of Zn2+ dependent extracellular or membrane-bound endopeptidases which have been implicated to play critical roles in vertebrate development and human pathogenesis. A number of MMP genes have been found to be upregulated in some or all organs during frog metamorphosis, suggesting that different MMPs may have different functions in various organs/tissues. The recent advances in EST (expressed sequence tag) sequencing and the completion of the genome of Xenopus (X.

View Article and Find Full Text PDF

We describe the ultrastructural organization of the vitellogenic follicle stages in two caecilian species. Monthly samples of slices of ovary of Ichthyophis tricolor and Gegeneophis ramaswamii from the Western Ghats of India were subjected to transmission electron-microscopic analysis, with special attention to the follicle cell/oocyte interface. In order to maintain uniformity of the stages among the amphibians, all the stages in the caecilian follicles were assigned to stages I-VI, the vitellogenic and post-vitellogenic follicles being assigned to stages III-VI.

View Article and Find Full Text PDF

Sertoli cells constitute a permanent feature of the testis lobules in caecilians irrespective of the functional state of the testis. The developing germ cells are intimately associated with the Sertoli cells, which are adherent to the basal lamina, until spermiation. There are irregularly shaped cells in the cores of the testis lobules that interact with germ cells at the face opposite to their attachment with Sertoli cells.

View Article and Find Full Text PDF

Caecilians are a unique group of limbless burrowing amphibians with discontinuous distribution. Several caecilian species are viviparous, and all practice internal fertilization. In amniotic vertebrates the sperm undergo post-testicular physiological maturation when they are initiated into motility under the influence of an epididymal secretion.

View Article and Find Full Text PDF

Spermiogenesis, known as spermateleosis in lower vertebrates, is the transformation of the round spermatid into a highly specialized spermatozoon with a species-specific structure. Spermateleosis and sperm morphology of two species of caecilians, Ichthyophis tricolor and Uraeotyphlus cf. narayani, from the Western Ghats of Kerala, India, were studied using light and transmission electron microscopy.

View Article and Find Full Text PDF

The sequential changes during spermatogenesis in the testis of two species of caecilians, Ichthyophis tricolor (Ichthyophiidae) and Uraeotyphlus cf. narayani (Uraeotyphliidae), of Western Ghats of Kerala, India, were traced using both histological techniques and transmission electron microscopy. The cell nests were assigned to stages in spermatogenesis based on the classification of van Oordt (1956, Thesis, Utrecht University).

View Article and Find Full Text PDF

This study reports the anatomy, histology, and ultrastructure of the male Mullerian gland of the caecilian Uraeotyphlus narayani, based on dissections, light microscopic histological and histochemical preparations, and transmission electron microscopic observations. The posterior end of the Mullerian duct and the urinogenital duct of this caecilian join to form a common duct before opening into the cloaca. The boundary of the entire gland has a pleuroperitoneum, followed by smooth muscle fibers and connective tissue.

View Article and Find Full Text PDF

The caecilians have evolved a unique pattern of cystic spermatogenesis in which cysts representing different stages in spermatogenesis coexist in a testis lobule. We examined unsettled issues relating to the organization of the caecilian testis lobules, including the occurrence of a fatty matrix, the possibility of both peripheral and central Sertoli cells, the origin of Sertoli cells from follicular cells, and the disengagement of older Sertoli cells to become loose central Sertoli cells. We subjected the testis of Ichthyophis tricolor (Ichthyophiidae) and Uraeotyphlus cf.

View Article and Find Full Text PDF