Publications by authors named "Smita Debnath"

The optimization of a novel series of non-nucleoside reverse transcriptase inhibitors (NNRTI) led to the identification of pyridone 36. In cell cultures, this new NNRTI shows a superior potency profile against a range of wild type and clinically relevant, resistant mutant HIV viruses. The overall favorable preclinical pharmacokinetic profile of 36 led to the prediction of a once daily low dose regimen in human.

View Article and Find Full Text PDF

A discriminating dissolution method using a USP apparatus 2 dissolution tester was developed for a nitric oxide donating selective COX-2 inhibitor to support phase I and II formulation development, clinical supplies release and stability testing of an immediate release oral tablet. The BCS class II compound showed very low aqueous solubility and required the use of surfactant-containing (sodium lauryl sulfate (SLS)) dissolution medium in order to achieve an appropriate release profile. The dissolution method utilized 900 mL of 2% SLS (w/v).

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) was evaluated as an early phase process analytical technology (PAT) tool for the rapid characterization of pharmaceutical tablet coatings. Measurement of coating thickness, uniformity, and photodegradation-predictive potential of the technique were evaluated. Model formulation tablets were coated with varying amounts (2%-4% wt/wt) of red and yellow Opadry II, and a pulsed laser was used to sample at multiple sites across the tablet face.

View Article and Find Full Text PDF

The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the performance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate --> hydrate --> anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate.

View Article and Find Full Text PDF

Purpose: The purpose of this study was (i) to develop glancing angle x-ray powder diffractometry (XRD) as a method for profiling phase transformations as a function of tablet depth; and (ii) to apply this technique to (a) study indomethacin crystallization during dissolution of partially amorphous indomethacin tablets and to (b) profile anhydrate --> hydrate transformations during dissolution of theophylline tablets.

Methods: The intrinsic dissolution rates of indomethacin and theophylline were determined after different pharmaceutical processing steps. Phase transformations during dissolution were evaluated by various techniques.

View Article and Find Full Text PDF