Publications by authors named "Smit Bhimani"

The current dogma is that chemoattractants G protein-coupled receptors activate β phospholipase C while receptor tyrosine kinases activate γ phospholipase C. Here, we show that chemoattractant/G protein-coupled receptor-mediated membrane recruitment of γ2 phospholipase C constitutes G protein-coupled receptor-mediated phospholipase C signaling and is essential for neutrophil polarization and migration during chemotaxis. In response to a chemoattractant stimulation, cells lacking γ2 phospholipase C (plcg2kd) displayed altered dynamics of diacylglycerol production and calcium response, increased Ras/PI3K/Akt activation, elevated GSK3 phosphorylation and cofilin activation, impaired dynamics of actin polymerization, and, consequently, defects in cell polarization and migration during chemotaxis.

View Article and Find Full Text PDF

Neutrophils sense and migrate through an enormous range of chemoattractant gradients through adaptation. Here, we reveal that in human neutrophils, calcium-promoted Ras inactivator (CAPRI) locally controls the GPCR-stimulated Ras adaptation. Human neutrophils lacking CAPRI ( ) exhibit chemoattractant-induced, nonadaptive Ras activation; significantly increased phosphorylation of AKT, GSK-3α/3β, and cofilin; and excessive actin polymerization.

View Article and Find Full Text PDF

Chemotaxis, which is G protein-coupled receptor (GPCR)-mediated directional cell migration, plays pivotal roles in diverse human diseases, including recruitment of leukocytes to inflammation sites and metastasis of cancer. It is still not fully understood how eukaryotes sense and chemotax in response to chemoattractants with an enormous concentration range. A genetically traceable model organism, , is the best-studied organism for GPCR-mediated chemotaxis.

View Article and Find Full Text PDF

Macropinocytosis and phagocytosis are the processes by which eukaryotic cells use their plasma membrane to engulf liquid or a large particle and give rise to an internal compartment called the macropinosomes or phagosome, respectively. Dictyostelium discoideum provides a powerful system to understand the molecular mechanism of these two fundamental cellular processes that impact human health and disease. Recent developments in fluorescence microscopy allow direct visualization of intracellular signaling events with high temporal and spatial resolution.

View Article and Find Full Text PDF