Carbon nanotube (CNT) applications are increasing in consumer products, including agriculture devices, making them an important contaminant to study in the field of plant nanotoxicology. Several studies have observed the uptake and effects of CNTs in plants. However, in other studies differing results were observed on growth and physiology depending on the plant species and type of CNT.
View Article and Find Full Text PDFStructural electrodes made of reduced graphene oxide (rGO) and aramid nanofiber (ANF) are promising candidates for future structural supercapacitors. In this study, the influence of nanoarchitecture on the effective ionic diffusivity, porosity, and tortuosity in rGO/ANF structural electrodes is investigated through multiphysics computational modeling. Two specific nanoarchitectures, namely, "house of cards" and "layered" structures, are evaluated.
View Article and Find Full Text PDFMaterial extrusion (ME) 3D printing is a revolutionary technique for manufacturing thermoplastic parts; however, the printed parts typically suffer from poor interlayer bonding, which causes weak tensile strength in the build direction. Many methods have been proposed to address the mechanical deficiencies of 3D-printed parts, but most fall short of a production-ready solution. Here we report the use of a dielectric barrier discharge (DBD) plasma electrode mounted concentrically around the nozzle of an ME 3D printer for welding of thermoplastic parts.
View Article and Find Full Text PDFIn recent years, reports of plastic debris in the gastrointestinal (GI) tract of fish have been well documented in the scientific literature. This, in turn, increased concerns regarding human health exposure to microplastics through the consumption of contaminated fish. Most of the available research regarding microplastic toxicity has focused on marine organisms through direct feeding or waterborne exposures at the individual level.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2020
Hypothesis: Self-assembled graphene hydrogels are notable in the field of electrochemical energy storage for their unique combination of excellent specific surface area, high porosity, and electrically conductive continuous network. However, graphene hydrogels suffer from poor mechanical integrity compared to layered architectures like graphene buckypapers, limiting their applications in practical devices. We propose the use of high strength, Kevlar®-derived polymeric nanofillers, aramid nanofibers (ANFs) as structural fillers to enhance graphene hydrogel's shear modulus in the context of multifunctional (mechanical and electrochemical) architectures.
View Article and Find Full Text PDFElectrochemical exfoliation is a promising bulk method for producing graphene from graphite; in this method, an applied voltage drives ionic species to intercalate into graphite where they form gaseous species that expand and exfoliate individual graphene sheets. However, a number of obstacles have prevented this approach from becoming a feasible production route; the disintegration of the graphite electrode as the method progresses is the chief difficulty. Here we show that if graphite powders are contained and compressed within a permeable and expandable containment system, the graphite powders can be continuously intercalated, expanded, and exfoliated to produce graphene.
View Article and Find Full Text PDFGraphene oxide (GO)-based gels are attractive because of their ability to retain individual nanosheet properties in a three-dimensional (3D) bulk material. The final morphology and properties of these 3D gel networks depend strongly on the type and density of cross-links, and these gels can be dried and annealed to form aerogels with both high conductivity (560 S/m) and high surface area (1700 m/g). The results show that both ammonia content and the parent nanosheet morphology (crumpled vs flat) have a strong influence on the cross-linked structure and composition; notably, nitrogen is found in the gels, suggesting that ammonia actively participates in the reaction rather than as a mere catalyst.
View Article and Find Full Text PDFThe increase in use of nanomaterials such as multiwalled carbon nanotubes (MWCNTs) presents a need to study their interactions with the environment. Trophic transfer was measured between Daphnia magna and Pimephales promelas (fathead minnow, FHM) exposed to MWCNTs with different outer diameter (OD) sizes (MWCNT1 = 8-15 nm OD and MWCNT2 = 20-30 nm OD) in the presence and absence of copper. Pristine FHM were fed D.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
We investigate the π-π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene.
View Article and Find Full Text PDFThe use of carbon-based nanomaterials (CNMs) such as multiwalled carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO) is increasing across many applications because of their unique and versatile properties. These CNMs may enter the aquatic environment through many pathways, creating the potential for organism exposure. The present study addresses the bioaccumulation and toxicity seen in Daphnia magna exposed to CNMs dispersed in sodium dodecyl benzene sulfonate (SDBS).
View Article and Find Full Text PDFScalable production of graphene through liquid-phase exfoliation has been plagued by low yields. Although several recent studies have attempted to improve graphene exfoliation technology, the problem of separating colloidal nanosheets from unexfoliated parent material has received far less attention. Here we demonstrate a scalable method for improving nanosheet yield through a facile washing process.
View Article and Find Full Text PDFRecent developments in the exfoliation, dispersion, and processing of pristine graphene (i.e., non-oxidized graphene) are described.
View Article and Find Full Text PDFSingle-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d.
View Article and Find Full Text PDF