Objectives: This study aimed to evaluate the intensity of the subacute local biological effects after implantation and osseoconductive potential of novel hydroxyapatite-based bone substitute coated with poly (lactide-co-glycolide), named ALBO-OS, in comparison to Bio-Oss.
Methods: Fifteen male Wistar rats, randomly assigned into groups: 10, 20, and 30 days (n꞊5), were subcutaneously implanted with ALBO-OS and Bio-Oss. Furthermore, artificially made bone defects on both rat's tibias were implanted with experimental materials.
Pyrophyllite is the least studied natural clay in terms of its potential in biomedical applications, although there are many deposits of this aluminosilicate around the world. Genotoxicity study was performed in vitro for this mineral. Subsequently, Wister rats were exposed to the pyrophyllite micronized to below 100 µm.
View Article and Find Full Text PDFThe effects of a new material based on hydroxyapatite and calcium silicates, named ALBO-MPCA, were investigated on the liver, kidney and spleen. The material was administrated orally for 120 days in an in vivo model in Wistar rats, and untreated animals served as a control. Hematological and biochemical blood parameters were analyzed.
View Article and Find Full Text PDFNovel three-dimensional (3D) nanohydroxyapatite-PLGA scaffolds with high porosity was developed to better mimic mineral component and microstructure of natural bone. To perform a final assessment of this nanomaterial as a potential bone substitute, its toxicological profile was particularly investigated. Therefore, we performed a comet assay on human monocytes for in vitro genotoxicity investigation, and the systemic subchronic toxicity investigation on rats being per oral feed with exactly administrated extract quantities of the nano calcium hydroxyapatite covered with tiny layers of PLGA (ALBO-OS) for 120 days.
View Article and Find Full Text PDF