Publications by authors named "Smets J"

Article Synopsis
  • The study investigates the relationship between surface characteristics like wetting and topography and their impact on ice adhesion strength (IAS), highlighting inconsistencies in previous research efforts.
  • It summarizes various wetting and topography parameters linked to IAS and evaluates a broad range of surfaces using advanced measurement techniques.
  • Findings reveal significant errors in past assumptions about IAS correlations, particularly challenging the notion of practical work of adhesion, and identify a promising wetting parameter that could effectively correlate with shear IAS on certain smooth surfaces.
View Article and Find Full Text PDF

Heterobimetallic Metal-Organic Frameworks (MOFs) synergically combine the properties of two metal ions, thus offering significant advantages over homometallic MOFs in gas storage, separation, and catalysis, among other applications. However, these remain centered on bulk materials, while applications that require functional coatings on solid supports are not developed. We explore for the first time the deposition of heterometallic Ti-based MOF thin films using vapor-assisted conversion on substrates functionalized with a self-assembled monolayer.

View Article and Find Full Text PDF

Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits.

View Article and Find Full Text PDF

Microbes are increasingly employed as cell factories to produce biomolecules. This often involves the expression of complex heterologous biosynthesis pathways in host strains. Achieving maximal product yields and avoiding build-up of (toxic) intermediates requires balanced expression of every pathway gene.

View Article and Find Full Text PDF

In the field of encapsulation, microcapsules containing perfume have emerged as effective vehicles for delivering active ingredients across various applications. The present study employed a multivariate analysis framework to examine polyacrylate microcapsules for household products synthesized using different acrylate monomers. The advanced multivariate approach allowed us to quantify critical properties such as the (), mechanical attributes, (), and .

View Article and Find Full Text PDF

Their chemical diversity, uniform pore sizes, and large internal surface areas make metal-organic frameworks (MOFs) highly suitable for volatile organic compound (VOC) adsorption. This work compares two geometries of capacitive VOC sensors that use the MOF material ZIF-8 as an affinity layer. When using a permeable top electrode (thickness < 25 nm), the metal-insulator-metal (MIM) sandwich configuration exhibits superior sensitivity, an improved detection limit, and a smaller footprint than the conventional interdigitated electrode layout.

View Article and Find Full Text PDF

Introduction: Limb ischemia is a severe complication of peripheral veno-arterial extracorporeal life support (V-A ECLS). Several techniques have been developed to prevent this, but it remains a major and frequent adverse event (incidence: 10-30%). In 2019, a new cannula with bidirectional flow (retrograde towards the heart and antegrade towards the distal limb) has been introduced.

View Article and Find Full Text PDF

Hypothesis: Organic solvents are often used for cleaning highly water-sensitive artifacts in modern/contemporary art. Due to the toxicity of most solvents, confining systems must be formulated to use these fluids in a safe and controlled way. We propose here castor oil (CO) organogels, obtained thorough cost-effective sustainable polyurethane crosslinking.

View Article and Find Full Text PDF

Crystalline coordination polymers with high electrical conductivities and charge carrier mobilities might open new opportunities for electronic devices. However, current solvent-based synthesis methods hinder compatibility with microfabrication standards. Here, we describe a solvent-free chemical vapor deposition method to prepare high-quality films of the two-dimensional conjugated coordination polymer Cu-BHT (BHT = benzenehexanothiolate).

View Article and Find Full Text PDF

Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) cannulas have major repercussions on vascular hemodynamics that can potentially lead to limb ischemia. Duplex ultrasound enables the non-invasive analysis of vascular hemodynamics. This study aims to describe the duplex parameters of the femoral vessels during V-A ECMO support, investigate differences between cannulated and non-cannulated vessels, and analyze the variations in the case of limb ischemia and intra-aortic balloon pumps (IABPs).

View Article and Find Full Text PDF

Soluplus is an amphiphilic graft copolymer intensively studied as a micellar solubilizer for drugs. An extensive characterization of the nanostructure of its colloidal aggregates is still lacking. Here, we provide insights into the polymer's self-assembly in water, and we assess its use as an encapsulating agent for fragrances.

View Article and Find Full Text PDF

The liquid-liquid phase separation (LLPS) of amphiphilic thermoresponsive copolymers can lead to the formation of micron-sized domains, known as simple coacervates. Due to their potential to confine active principles, these copolymer-rich droplets have gained interest as encapsulating agents. Understanding and controlling the conditions inducing this LLPS is therefore essential for applicative purposes and requires thorough fundamental studies on self-coacervation.

View Article and Find Full Text PDF

Hypothesis: Soluplus® is one of the most widely used amphiphilic copolymers in drug delivery and has been reported to strongly enhance the adsorption of model drugs. However, there is still a limited understanding of its micellar behavior as it responds to the different routes of administration, which involve important changes in concentration.

Experiments: The microstructure of Soluplus aqueous solutions has been investigated at a wide range of polymer concentrations (2 × 10 - 0.

View Article and Find Full Text PDF

The high volatility, water-immiscibility, and light/oxygen-sensitivity of most aroma compounds represent a challenge to their incorporation in liquid consumer products. Current encapsulation methods entail the use of petroleum-based materials, initiators, and crosslinkers as well as mixing, heating, and purification steps. Hence, more efficient and eco-friendly approaches to encapsulation must be sought.

View Article and Find Full Text PDF

Osteoporosis and its clinical consequence, bone fracture, is a multifactorial disease that has been the object of extensive research. Recent advances in machine learning (ML) have enabled the field of artificial intelligence (AI) to make impressive breakthroughs in complex data environments where human capacity to identify high-dimensional relationships is limited. The field of osteoporosis is one such domain, notwithstanding technical and clinical concerns regarding the application of ML methods.

View Article and Find Full Text PDF

The encapsulation of poorly water-soluble compounds such as perfumes, flavors, and bioactive molecules is a key step in the formulation of a large variety of consumer products in the fields of household care and personal care. We study the encapsulation ability of an amphiphilic poly(ethylene glycol)--poly(vinyl acetate) (PEG--PVAc) graft copolymer, extending the focus to the entire phase diagram of polymer/perfume/water systems with three common natural fragrances. The three perfume molecules (2-phenyl ethanol, L-carvone, and α-pinene) possess different water affinities, as expressed by their octanol/water partition coefficients.

View Article and Find Full Text PDF

Hypothesis: Liquid-liquid phase separation (LLPS) can provide micron-sized liquid compartments dispersed in an aqueous medium. This phenomenon is increasingly appreciated in natural systems, e.g.

View Article and Find Full Text PDF

The self-assembly of amphiphilic graft copolymers is generally reported for polymer melts or polymers deposited onto surfaces, while a small number of cases deal with binary mixtures with water. We report on the associative properties of poly(ethylene glycol)-graft-poly(vinyl acetate) (PEG-g-PVAc) comb-like copolymers in water, demonstrating the existence of a percolative behaviour when increasing the PEG-g-PVAc content. Rheology, light- and small-angle X-ray scattering experiments, together with dissipative particle dynamics simulations, reveal a progressive transition from spherical polymer single-chain nanoparticles (SCNPs) towards hierarchically complex structures as the weight fraction of the polymer in water increases.

View Article and Find Full Text PDF

(1) Background: Previous research (Van Gucht, Adriaens, and Baeyens, 2017) showed that almost all (99%) of the 203 surveyed customers of a Dutch online vape shop had a history of smoking before they had started using an e-cigarette. Almost all were daily vapers who used on average 20 mL e-liquid per week, with an average nicotine concentration of 10 mg/mL. In the current study, we wanted to investigate certain evolutions with regard to technical aspects of vaping behaviour, such as wattage, the volume of e-liquid used and nicotine concentration.

View Article and Find Full Text PDF

Cationic and anionic block copolymer worms are prepared by polymerization-induced self-assembly via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion copolymerization of 2-hydroxypropyl methacrylate and glycidyl methacrylate (GlyMA), using a binary mixture of a nonionic poly(ethylene oxide) macromolecular RAFT agent and either a cationic poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) or an anionic poly(potassium 3-sulfopropyl methacrylate) macromolecular RAFT agent. In each case, covalent stabilization of the worm cores was achieved via reaction of the epoxide groups on the GlyMA repeat units with 3-mercaptopropyltriethoxysilane. Aqueous electrophoresis studies indicated a pH-independent mean zeta potential of +40 mV and -39 mV for the cationic and anionic copolymer worms, respectively.

View Article and Find Full Text PDF

A series of linear cationic diblock copolymer nanoparticles are prepared by polymerization-induced self-assembly (PISA) reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a binary mixture of non-ionic and cationic macromolecular RAFT agents, namely poly(ethylene oxide) (PEO, = 4400 g mol; / = 1.08) and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) (PQDMA, = 31 800 g mol, / = 1.19).

View Article and Find Full Text PDF

Amphiphilic poly(ethylene glycol)-graft-poly(vinyl acetate) copolymers with a low degree of grafting undergo self-folding in water driven by hydrophobic interactions, resulting in single-chain nanoparticles (SCNPs) possessing a hydrodynamic radius of about 10 nm. A temperature scan revealed a lower critical solution temperature (LCST)-type phase behavior. In addition, SAXS data collected close to the LCST showed that these SCNPs aggregate into one-dimensional elongated objects, preferentially.

View Article and Find Full Text PDF

This study examines the impeding role of self-critical perfectionism at onset of treatment on therapeutic alliance during treatment and eating disorder symptoms at follow-up in patients with an eating disorder. Participants were 53 female patients with a mean age of 21.1 years treated for an eating disorder in a specialized inpatient treatment unit.

View Article and Find Full Text PDF

A facile synthesis route to novel inorganic/organic hybrid microcapsules is reported. Laponite nanoparticles are surface-modified via electrostatic adsorption of Magnafloc, an amine-based polyelectrolyte allowing the formation of stable oil-in-water Pickering emulsions. Hybrid microcapsules can be subsequently prepared by coating these Pickering emulsion precursors with dense melamine formaldehyde (MF) shells.

View Article and Find Full Text PDF