Publications by authors named "Smedt S"

Aim: Cationic lipids (Lipofectamine™ [Invitrogen, Merelbeke, Belgium] and 1,2-dioleoyl-3-trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and polymers (jetPEI™ and in vivo-jetPEI™ [Polyplus-transfection, Illkirch, France]) were evaluated for their potential to deliver mRNA to monocyte-derived dendritic cells.

Materials & Methods: Lipoplexes and polyplexes, containing mRNA encoding GFP or Gag protein, were incubated with human monocyte-derived dendritic cells and transfection efficiencies were assessed by flow cytometry.

Results: Lipofectamine was by far the most efficient in mRNA delivery, therefore it was used in further experiments.

View Article and Find Full Text PDF

The low transfection efficacy of non-viral gene delivery systems limits the therapeutic application of these vectors. Besides the inefficient release of the complexes or pDNA from endolysosomes into the cytoplasm or poor nuclear uptake, the nuclear and post-nuclear processing might unfavorably affect the transgene expression. Positively charged amphiphilic 1,4-dihydropyridine (1,4-DHP) derivatives were earlier proposed as a promising tool for the delivery of DNA into target cells in vitro and in vivo.

View Article and Find Full Text PDF

Objective: We sought to describe the clinical presentation, effect on visual acuity, impact on school attendance, and access to appropriate eye care in children with vernal keratoconjunctivitis (VKC) in Rwanda (Central Africa).

Design: Case-control study nested within a cross-sectional survey.

Participants: We examined 3041 children; 121 had VKC.

View Article and Find Full Text PDF

Complexes between mRNA and GL67:DOPE:DMPE-PEG5000 (GL67) liposomes were formulated and characterized. Subsequently, the in vitro and in vivo expression characteristics of mRNA/GL67 complexes and pDNA/GL67 complexes, each produced at their optimal ratio, were compared in respiratory cells. Transfection of A549 cells with mRNA/GL67 complexes resulted in a much faster expression than after transfection with pDNA/GL67 complexes.

View Article and Find Full Text PDF

In this study, we aimed at specific targeting of polycationic amphiphilic cyclodextrins (paCDs) to HepG2 cells via the asialoglycoprotein receptor (ASGPr). The transfection efficiencies of paCDs modified with galactose moieties were evaluated. In preliminary experiments, attempts to transfect HepG2 cells with pDNA complexed with different modified paCDs resulted in very low transfection levels.

View Article and Find Full Text PDF

The in vitro labeling of therapeutic cells with nanoparticles (NPs) is becoming more and more common, but concerns about the possible effects of the NPs on the cultured cells are also increasing. In the present work, we evaluate the effects of poly(methacrylic acid)-coated 4 nm diameter Au NPs on a variety of sensitive and therapeutically interesting cell types (C17.2 neural progenitor cells, human umbilical vein endothelial cells, and PC12 rat pheochromocytoma cells) using a multiparametric approach.

View Article and Find Full Text PDF

Polymeric capsules have attracted great interest as versatile carrier systems in the area of medicine and pharmaceutics. These capsules are made by stepwise layer-by-layer adsorption of polymers onto a template core, which can be removed to produce hollow capsules. The cavity of these capsules can host various cargo molecules while the capsules' wall can be functionalized towards desired properties by embedding specific moieties into the multilayers.

View Article and Find Full Text PDF

In the field of nanomedicine, ample attention has been paid to the development of nanocarriers for the intracellular delivery of therapeutic cargo, such as nucleic acids for gene therapy. The efficiency with which these non-viral carriers deliver their payload at the required intracellular site of action remains low. Despite extensive research on cellular attachment, endocytosis and intracellular trafficking of nanocarriers, clear-cut rules for the design of effective nanocarriers to improve nucleic acid transfer are still lacking.

View Article and Find Full Text PDF

The use of iron oxide nanoparticles (IONPs) in biomedical research is steadily increasing, leading to the rapid development of novel IONP types and an increased exposure of cultured cells to a wide variety of IONPs. Due to the large variation in incubation conditions, IONP characteristics, and cell types studied, it is still unclear whether IONPs are generally safe or should be used with caution. During the past years, several contradictory observations have been reported, which highlight the great need for a more thorough understanding of cell-IONP interactions.

View Article and Find Full Text PDF

The interest in the biomedical use of highly fluorescent and photostable nanoparticles such as quantum dots (QDots) is vastly increasing. One major hurdle that impedes QDot use in live cells and animals is their potential toxicity. Here, we employ a recently described multiparametric setup to determine the concentration at which common polymer-coated QDots become non-cytotoxic.

View Article and Find Full Text PDF

Cell penetrating peptides (CPPs) have been extensively studied as vectors for cellular delivery of therapeutic macromolecules. It is widely accepted that they can enter cells directly across the plasma membrane but also gain access through endocytic pathways that are yet to be fully defined. Here we developed siRNA methods in epithelial cell lines, HeLa and A431, to inhibit endocytic pathways regulated by clathrin heavy chain, flotillin-1, caveolin-1, dynamin-2 and Pak-1.

View Article and Find Full Text PDF

Cell labeling with various types of nanomaterial, such as FDA-approved iron oxide nanoparticles (IONPs) has become common practice in biomedical research. The low uptake of IONPs stimulates the use of transfection agents (TA), but the effect on stability of the IONPs and their cellular interactions has received minimal attention. In the present study, we evaluated the use of Lipofectamine as a commonly used TA and tested different ratios of TA and IONPs.

View Article and Find Full Text PDF

Delivery of reprogramming factor-encoding mRNAs by means of lipofection in somatic cells is a desirable method for deriving integration-free iPSCs. However, the lack of reproducibility implies there are major hurdles to overcome before this protocol becomes universally accepted. This study demonstrates the functionality of our in-house synthesized mRNAs expressing the reprogramming factors (OCT4, SOX2, KLF4, c-MYC) within the nucleus of human fibroblasts.

View Article and Find Full Text PDF

The nucleocytoplasmic partitioning of nanoparticles as a result of cell division is highly relevant to the field of nonviral gene delivery. We reviewed the literature on the intracellular distribution of cell organelles (the endosomal vesicles, Golgi apparatus, endoplasmic reticulum and nucleus), foreign macromolecules (dextrans and plasmid DNA) and inorganic nanoparticles (gold, quantum dot and iron oxide) during mitosis. For nonviral gene delivery particles (lipid- or polymer-based), indirect proof of nuclear entry during mitosis is provided.

View Article and Find Full Text PDF

Over the last decade, considerable effort has been put in the implementation of RNA interference (RNAi) as a treatment for various disorders. As RNAi occurs in the cytoplasm of cells, it is imperative that RNAi mediators such as small interfering RNA (siRNA) cross several extracellular and intracellular barriers to reach this site of action. Among the extensive range of proposed delivery systems for siRNA, matrix systems possess interesting properties to promote the delivery of siRNA to a target tissue.

View Article and Find Full Text PDF

Drug delivery systems present an opportunity to potentiate the therapeutic effect of antileishmanial drugs. Colloidal carriers are rapidly cleared by the phagocytic cells of the reticuloendothelial system (RES), rendering them ideal vehicles for passive targeting of antileishmanials. This paper describes the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for the antileishmanial saponin β-aescin.

View Article and Find Full Text PDF

The transition from organism-based traditional vaccines to the use of safer subunit vaccines has implemented the use of adjuvants to enhance immunogenicity. This study compares the potential of two types of polymeric microparticles as delivery systems for the model antigen ovalbumin. The delivery systems encompassed polyelectrolyte microcapsules, assembled via Layer-by-Layer technology, and PLGA microparticles fabricated by spray-drying.

View Article and Find Full Text PDF

siRNA therapeutics are currently regarded as promising candidates to make a leap forward in the search for treatments of various hard to cure diseases. In order to exploit the full potential of siRNA based therapeutics, development of delivery systems that can efficiently guide the siRNA molecules to their target without major side effects will be the key to success. Lipid based delivery systems, originating from earlier research in the fields of gene delivery, are the most studied candidates for siRNA delivery.

View Article and Find Full Text PDF

Despite many advances in modern medicine, human immunodeficiency virus (HIV) still affects the health of millions of people world-wide and much effort is put in developing methods to either prevent infection or to eradicate the virus after infection has occurred. Here, we describe the potential use of electrospun cellulose acetate phthalate (CAP) fibers as a tool to prevent HIV transmission. During the electrospinning process, anti-viral drugs can easily be incorporated in CAP fibers.

View Article and Find Full Text PDF

Microbubbles are Food and Drug Administration (FDA) approved contrast agents for ultrasound imaging. It has been reported that applying ultrasound on drug-loaded microbubbles facilitates drug uptake by cells, due to so-named sonoporation. However, the biophysics behind sonoporation are not fully understood.

View Article and Find Full Text PDF

Aim: To compare the short-term efficiency and safety of topical ciclosporin A (CsA) 2% with dexamethasone 0.1% in the treatment of predominantly limbal vernal keratoconjunctivitis (VKC) in Rwanda, Central Africa.

Methods: Consecutive patients with VKC were randomised in a prospective, double-masked, clinical trial to receive either topical CsA 2% dissolved in olive oil vehicle or dexamethasone 0.

View Article and Find Full Text PDF

The first successful reprogramming of differentiated cells to a pluripotent state was done by retroviral introduction of four transcription factors (Oct4, Sox2, Klf4, cMyc) by the group of Yamanaka in 2006. Since then, scientists all over the world have attempted various methods to avoid insertional mutagenesis, a major limitation of the retrovirus-based method, however no technique was found to completely avoid DNA integration. Recently, a non-viral mRNA-based approach, inherent to avoid genomic integration, was implemented to generate stem cell-like cells, yet, seventeen daily transfections were required, inducing substantial stress on the cells.

View Article and Find Full Text PDF

Vernal keratoconjunctivitis (VKC) is an allergic eye disease and an important cause of hospital referral among children in Africa and Asia. Hospital-based studies have suggested a role for parasites in its pathogenesis. To determine the prevalence and risk factors for VKC in Central Africa, we conducted a nested population-based case control study in Rwanda, involving randomly selected primary schools from different environments (rural/urban) and climate.

View Article and Find Full Text PDF

Purpose: Tumor necrosis factor α (TNF-α) plays a key role in the progression of rheumatoid arthritis and is an important target for anti-rheumatic therapies. TNF-α expression can be silenced with small interfering RNA (siRNA), but efficacy is dependent on efficient and safe siRNA delivery vehicles. We aimed to identify polymeric nanocarriers for anti-TNF-α siRNA with optimal efficacy and minimal off-target effects in vitro.

View Article and Find Full Text PDF

To gain a better understanding of intracellular processing of nanomedicines, we employed quantitative live-cell fluorescence colocalization microscopy to study endosomal trafficking of polyplexes in retinal pigment epithelium cells. A new, dynamic colocalization algorithm was developed, based on particle tracking and trajectory correlation, allowing for spatiotemporal characterization of internalized polyplexes in comparison with endosomal compartments labeled with EGFP constructs. This revealed early trafficking of the polyplexes specifically to Rab5- and flotillin-2-positive vesicles and subsequent delivery to Rab7 and LAMP1-labeled late endolysosomes where the major fraction of the polyplexes remains entrapped for days, suggesting the functional loss of these nanomedicines.

View Article and Find Full Text PDF