The paper deals with the preparation and characterization of compounds with antimicrobial activity: α-hydroxyphosphonic acids grafted onto styrene-12%-(15%)-divinylbenzene copolymer. These products proved to have antimicrobial effect against two species of gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two species of gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and a species of yeast (Candida albicans). Tests showed the reduction of bacterial load at different time intervals during the 18 h of contact.
View Article and Find Full Text PDFBackground: Phosphorus-containing high performance polymers have aroused wide interest, mainly due to good mechanical properties and their excellent fire resistance. The flexibility of synthetic polyphosphoesters allows the development of polymers in order to obtain solid polymer electrolytes for rechargeable lithium batteries based on solid films with superior fire resistance.
Results: Novel linear Phosphonate-PEG polymers were synthesized by solution polycondensation of 4-chlorophenyldichlorophosphonate as a linking agent and poly(ethylene glycol)s with different molecular weights in the presence of triethylamine or 1-methylimidazole as acid scavenger.
This paper is directed towards the development of safe, and thermally stable solid polymer electrolytes. Linear phosphorus-containing (co)polyesters are described, including their synthesis, thermal analysis, conductivity, and non-flammability. Polycondensation of phenylphosphonic dichloride (PPD) with poly(ethylene glycol) (PEG 12000) with and without bisphenol A (BA) was carried out using solid-liquid phase transfer catalysis.
View Article and Find Full Text PDF