Publications by authors named "Smarajit Manna"

The design for vaccines using in silico analysis of genomic data of different viruses has taken many different paths, but lack of any precise computational approach has constrained them to alignment methods and some alignment-free techniques. In this work, a precise computational approach has been established wherein two new mathematical parameters have been suggested to identify the highly conserved and surface-exposed regions which are spread over a large region of the surface protein of the virus so that one can determine possible peptide vaccine candidates from those regions. The first parameter, , is the sum of the normalized values of the measure of surface accessibility and the normalized measure of conservativeness, and the second parameter is the area of a triangle formed by a mathematical model named 2D Polygon Representation.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has become a worldwide pandemic and created an utmost crisis across the globe. To mitigate the crisis, the design of vaccine is the crucial solution. The frequent mutation of the virus demands generalized vaccine candidates, which would be effective for all mutated strains at present and for the strains that would evolve due to further new mutations in the virus.

View Article and Find Full Text PDF

SARS-CoV-2 infection has become a worldwide pandemic and is spreading rapidly to people across the globe. To combat the situation, vaccine design is the essential solution. Mutation in the virus genome plays an important role in limiting the working life of a vaccine.

View Article and Find Full Text PDF

With the increasing frequency of viral epidemics, vaccines to augment the human immune response system have been the medium of choice to combat viral infections. The tragic consequences of the Zika virus pandemic in South and Central America a few years ago brought the issues into sharper focus. While traditional vaccine development is time-consuming and expensive, recent advances in information technology, immunoinformatics, genetics, bioinformatics, and related sciences have opened the doors to new paradigms in vaccine design and applications.

View Article and Find Full Text PDF

Unlabelled: A large number of alignment-free techniques of graphical representation and numerical characterization (GRANCH) of bio-molecular sequences have been proposed in the recent past years, but the relative efficacy of these methods in determining the degree of similarities and dissimilarities of such sequences have not been ascertained.

Objective: Our objective is to make an assessment of the relative efficacy of these methods in determining the degree of similarities and dissimilarities of bio-molecular sequences.

Method: We have chosen 7 published/communicated methods that represent various classes of GRANCH techniques and computed the descriptors that are expected to characterize similarities and dissimilarities in several sets of gene sequences.

View Article and Find Full Text PDF