Publications by authors named "Smadja-Joffe F"

Survival of acute myeloid leukemia (AML) cells is regulated by their adherence to bone marrow stromal environment. Several adhesion molecules mediate interactions between AML cells and stroma, but their specific role in AML cell survival is still poorly understood. Here, we show that CD44 activation with the Hermes-3 monoclonal antibody enhances primary AML5 blast survival and increases apoptosis resistance of THP-1 monoblastic leukemia cells.

View Article and Find Full Text PDF

CD44 is a marker of tumour-initiating cells and is upregulated in invasive breast carcinoma; however, its role in the cancer progression is unknown. Here, we show that antibody-mediated CD44-targeting in human breast cancer xenografts (HBCx) significantly reduces tumour growth and that this effect is associated to induction of growth-inhibiting factors. Moreover, treatment with this antibody prevents tumour relapse after chemotherapy-induced remission in a basal-like HBCx.

View Article and Find Full Text PDF

The long-term survival of patients with acute myeloid leukemia (AML) is dismally poor. A permanent cure of AML requires elimination of leukemic stem cells (LSCs), the only cell type capable of initiating and maintaining the leukemic clonal hierarchy. We report a therapeutic approach using an activating monoclonal antibody directed to the adhesion molecule CD44.

View Article and Find Full Text PDF

We have recently reported that ligation of the CD44 cell surface antigen with A3D8 monoclonal antibody (mAb) triggers incomplete differentiation and apoptosis of the acute promyelocytic leukemia (APL)-derived NB4 cells. The present study characterizes the mechanisms underlying the apoptotic effect of A3D8 in NB4 cells. We show that A3D8 induces activation of both initiator caspase-8 and -9 and effector caspase-3 and -7 but only inhibition of caspase-3/7 and caspase-8 reduces A3D8-induced apoptosis.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a clonal malignant disease characterized by an increasing number of immature myeloid cells arrested at various stages of granulocytic and monocytic differentiation. The stage of the blockage defines distinct AML subtypes (AML1 to AML5 are the most frequent ones). There is increasing evidence that the malignant clone is maintained by rare AML stem cells endowed with self-renewal capacity, which through extensive proliferation coupled to partial differentiation, generate leukemic progenitors and blasts, of which the vast majority have limited proliferative capacity.

View Article and Find Full Text PDF

Background: Hyaluronan (HA) has been reported to bind specifically and with high affinity to various cell types and to directly modify cell behaviour. In a previous report we demonstrated that both high molecular weight molecules (HA(H)) and HA-derived oligosaccharides were efficient at triggering terminal differentiation of acute myeloid leukemia (AML) blasts, in vitro, through CD44 ligation.

Materials And Methods: To explore the possibility of using HA for a differentiation therapy in AML, we investigated whether intravenous injection of tritiated HA(H) and/or HA-derived oligosaccharides (HA10-20) into mice accumulated in bone marrow, the main site of AML cell proliferation.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is sustained by the extensive proliferation of leukemic stem and progenitor cells, which give rise to the population of leukemic blasts with defective differentiation and low proliferative capacity. We have recently shown that ligation of CD44, a cell surface molecule present on AML cells, with specific monoclonal antibodies (mAbs) inhibits their proliferation. However, its mechanism has not been investigated yet.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous leukemia characterized by the blockage of myeloid differentiation at different stages, which define distinct AML subtypes. We have recently reported that the ligation of CD44 with 2 activating monoclonal antibodies (mAbs), A3D8 and H90, triggers terminal differentiation of leukemic blasts in AML-M1/2 to AML-M5 subtypes, which are the most frequent ones. However, fresh AML blasts have short in vitro lifespans.

View Article and Find Full Text PDF

Adhesion molecules can improve hematopoietic cell survival; however, their role in leukemic cell resistance to drug-induced apoptosis is poorly documented. The CD44 adhesion molecule is strongly expressed on acute myeloid leukemia (AML) blasts. Using 2 myeloid cell lines, HL60 and NB4, evidence is presented that prior incubation with the CD44-specific monoclonal antibody (mAb) A3D8, reported to induce differentiation of AML blasts, significantly decreases apoptosis induced by 3 drugs used in AML chemotherapy: daunorubicin (DNR), mitoxantrone, and etoposide.

View Article and Find Full Text PDF

Blockage in myeloid differentiation characterizes acute myeloid leukemia (AML); the stage of the blockage defines distinct AML subtypes (AML1/2 to AML5). Differentiation therapy in AML has recently raised interest because the survival of AML3 patients has been greatly improved using the differentiating agent retinoic acid. However, this molecule is ineffective in other AML subtypes.

View Article and Find Full Text PDF

CD44 is a ubiquitous cell-surface glycoprotein that displays many variant isoforms (CD44v) generated by alternative splicing of exons 2v to 10v. The expression of variant isoforms is highly restricted and correlated with specific processes, such as leukocyte activation and malignant transformation. We have herein studied CD44v expression in acute myeloid leukemia (AML) and, for comparison, in normal myelopoiesis.

View Article and Find Full Text PDF

Adhesive interactions between CD34+ hematopoietic progenitor cells (HPC) and bone marrow stroma are crucial for normal hematopoiesis, yet their molecular bases are still poorly elucidated. We have investigated whether cell surface proteoglycan CD44 can mediate adhesion of human CD34+ HPC to immobilized hyaluronan (HA), an abundant glycosaminoglycan of the bone marrow extracellular matrix. Our data show that, although CD34+ cells strongly express CD44, only 13.

View Article and Find Full Text PDF

Myelofibrosis with myeloid metaplasia (MMM) is a myeloproliferative disorder characterized by clonal expansion of hematopoiesis and marrow fibrosis. Previous results from our group have shown an increased production of two potent fibrogenic factors also involved in the regulation of primitive hematopoietic cells, namely transforming growth factor-beta1 (TGF-beta1) and basic fibroblast growth factor (bFGF), in patients with MMM. It is likely to assume that the myeloproliferation characteristic of this disease may result from an abnormal proliferation of CD34+ hematopoietic progenitors.

View Article and Find Full Text PDF

Angiogenesis is essential for tumor growth and metastasis. In the process of angiogenesis, the interaction between adhesive proteins of endothelial cells and extracellular matrix components plays an important role by mediating cell attachment, which is indispensable for their motility, and by transmitting the regulatory signals for cell locomotion and proliferation. In this study, we examined the hypothesis that CD44 expressed on the endothelial cell surface is involved in the angiogenesis process.

View Article and Find Full Text PDF

The CD44 cell surface molecule has been shown to be the principal cell surface receptor for hyaluronan (or hyaluronic acid), a glycosaminoglycan component of marrow extracellular matrix. However, its affinity for hyaluronan is not constitutive, since it depends on the cell type, the stage of differentiation and on activation by external stimuli including certain anti-CD44 antibodies and phorbol esters. Except for a few lymphoid cell lines, hematopoietic cells do not spontaneously bind hyaluronan and initial studies reported that, contrary to lymphocytes, myeloid cells could not be activated to bind hyaluronan.

View Article and Find Full Text PDF

Circadian changes in in vitro pharmacodynamic effects of recombinant mouse interleukin-3 (rmIL-3), rm granulocyte-macrophage colony-stimulating factor (rmGM-CSF), and recombinant human G-CSF (rhG-CSF) were investigated in 418 male B6D2F1 mice. Seven distinct experiments were staggered from July to December 1991. All mice were standardized for 3 weeks with a lighting schedule consisting of 12 hours of light and 12 hours of dark (LD12:12).

View Article and Find Full Text PDF

Cocultivation of erythroid leukemic cells (ELM-I-1) with hemopoietic supportive cells (MS-5) resulted in a specific adhesion of ELM-I-1 cells to MS-5 cells. This phenomenon was designated as rosette formation. After induction of differentiation of ELM-I-1 cells, rosette formation was reduced, and no rosette formation was observed between erythrocytes and MS-5 cells.

View Article and Find Full Text PDF

Hyaluronan-binding function of the CD44 molecule has not been so far detected in myeloid cells. To study pure populations of primitive myeloid cells, we investigated the hyaluronan-binding function of the CD44 molecule from three myeloid cell lines: KG1a, KG1, and HL60. Both KG1a and KG1 cells express the CD34 antigen characteristic of the hematopoietic stem cells and HL60 cells do not; accordingly, KG1a and KG1 cells are generally considered as the most primitive and HL60 cells as the most mature of these cell lines.

View Article and Find Full Text PDF

The changes occurring in the hematopoietic extracellular matrix in an experimental myeloproliferative syndrome were explored by comparing the glycosaminoglycan (GAG) composition of normal mouse spleens and spleens infected with myeloproliferative sarcoma virus (MPSV). Large quantities of hyaluronate and of sulfated GAGs accumulated in the extracellular matrix of infected spleens, as shown by histoimmunoassay and alcian blue staining, respectively. The splenic GAGs were either labeled with 35S-sulfate injected in vivo or unlabeled.

View Article and Find Full Text PDF

The murine myeloproliferative syndrome induced by the myeloproliferative sarcoma virus (MPSV) has numerous similarities to human primary myelofibrosis. We have shown that medium conditioned by spleen cells of MPSV-infected mice has the capacity to support the growth of primitive blast cell colonies. The detection of this activity associated with MPSV infection stimulated us to characterize the hematopoietins responsible for this activity.

View Article and Find Full Text PDF