While plant toxicity reduction remains the primary metric for judging the success of metal immobilization in soil, the suitability of microorganisms as universal indicators of its effectiveness in various contaminated soils remains a point of contention. This study assessed the sensitivity of microbial bioindicators in monitoring metal immobilization success in smelter-impacted soils. It compared plants and microorganisms as indicators of the efficiency of natural Fe-Mn nodules from the Gulf of Finland in immobilizing metals in soils contaminated by a Ni/Cu smelter, on the Kola Peninsula, Murmansk region, Russia.
View Article and Find Full Text PDFThe increasing popularity and recognition of citizen science approaches to monitor soil health have promoted the idea to assess soil microbial decomposition based on a standard litter sample - tea bags. Although tea bag initiatives are expanding across the world, the global datasets remain biased in regard to investigating regions and biomes. This study aimed to expand the tea bag initiative to European Russia, which remains a "white spot" on the tea bag index map.
View Article and Find Full Text PDFThe possibility of plants growing on serpentine soils and the ability of serpentine minerals to accumulate significant amounts of metals was the basis for developing a method for using serpentine-containing materials to restore vegetation in areas with a high level of metal pollution. Serpentine-containing products obtained from phlogopite mining overburden (Kovdor, Murmansk region, Russia) with and without thermal activation were used in a field experiment on the remediation of industrially polluted peat soil. According to the geochemical mobility of the components, one of four fractions was allocated depending on the acidic (HCl) concentration of the solution used for the material treatment: readily mobile (0.
View Article and Find Full Text PDFMining activities create disturbed and polluted areas in which revegetation is complicated, especially in northern areas. For the first time, the state of the ecosystems in the impact zone of tailings formed during the processing of rare earth element deposits in the Subarctic have been studied. This work aimed to reveal aspects of accumulation and translocation of trace and biogenic elements in plants ( (L.
View Article and Find Full Text PDFThe impact of geographical factors, functional zoning, and biotope type on the diversity of microbial communities and chemical components in the dust of urban ecosystems was studied. Comprehensive analyses of bacterial and fungal communities, polycyclic aromatic hydrocarbons (PAHs), and metals in road and leaf dust in three urban zones of Murmansk and Moscow with contrasting anthropogenic load were conducted. We found that the structure of bacterial communities affected the functional zoning of the city, biotope type, and geographical components.
View Article and Find Full Text PDFMaterials (Basel)
December 2022
The influence of structural features of three serpentine-group minerals (antigorite, chrysotile, and lizardite) on the hydration of heat-treated materials and the formation of magnesium silicate binder has been studied. Initial serpentine samples have been fired in the interval 550-800 °C with a step of 50 °C; acid neutralization capacity (ANC) values have been determined for all samples. Antigorite samples (SAP) have exhibited a maximum reactivity at a temperature of 700 °C (ANC 7.
View Article and Find Full Text PDFWe performed a comparative study of the total bacterial communities and communities of cultivable polycyclic aromatic hydrocarbons (PAH)-degrading bacteria in different functional zones of Moscow and Murmansk that were formed under the influence of the PAH composition in road and leaf dust. The PAHs were determined by high-performance liquid chromatography (HPLC); the bacterial communities' diversity was assessed by metabarcoding. The degraders were isolated by their direct plating on a medium with the PAHs.
View Article and Find Full Text PDFHeat-treated serpentine products from mining wastes have been examined to remediate highly contaminated soil with total concentration of Cu 10470 mg/kg and Ni 5300 mg/kg. The series of laboratory and field experiments (for 10 years) were conducted. The modified Tessier method was used to assess the metals geochemical mobility.
View Article and Find Full Text PDFSerpentine heat treatment at temperatures of 650-750 °C yields magnesium-silicate reagent with high chemical activity. Precise and express control of roasting conditions in laboratory kilns and industrial aggregates is needed to derive thermally activated serpentines on a large scale. Color change in serpentines with a high iron content during roasting might be used to indicate the changes in chemical activity in the technological process.
View Article and Find Full Text PDFAn evaluation of fraction composition and transformation of metal compounds emitted by metal ore processing enterprises and accumulated in soils is crucial for assessing the environmental risks of pollution and ecosystem benefit of remediation. The aim of this study was to develop a suitable sequential fractional procedure for metal pollutants for the peat soils matrix in the impact zone of a Cu-Ni smelter. Three experiment series were performed: (a) the study of the effect of ammonium acetate buffer pH in the range of 3.
View Article and Find Full Text PDF