In providing a supportive and sustainable research environment, the institution has a key role to play in scholarly publishing. Whether that be as a guide, assisting researchers through the maze of publishing options and access to specialist audiences, or as an auditor for funders, or as a financer, agreeing article processing charges and subsidising website maintenance. Equally, the institution is the specialist systems developer and protector of the 'unpublished' research.
View Article and Find Full Text PDFThere is a large body of evidence indicating important interactions between the adenosine and opioid systems in regulating pain at both the spinal and supraspinal level. Mice lacking the mu-opioid receptor (MOR) gene have been successfully developed and the animals show complete loss of analgesic responses to morphine as well as differences in pain sensitivity. To investigate if there are any compensatory alterations in adenosine systems in mutant animals, we have carried out quantitative autoradiographic mapping of A(1) and A(2A) adenosine receptors and nitrobenzylthioinosine (NBTI) sensitive adenosine transporters in the brains and spinal cords of wild type, heterozygous and homozygous mu-opioid receptor knockout mice.
View Article and Find Full Text PDFThe opioid receptor-like 1 (ORL1) receptor shares a high degree of sequence homology with the classical mu-, delta- and kappa-opioid receptors and a functional mutual opposition between these receptors has been suggested. To further address this possible interaction we have used mu-, delta- and kappa-opioid receptor knockout mice to determine autoradiographically if there are any changes in the number or distribution of the ORL1 receptor, labelled with [(3)H]nociceptin, in the brains of mice deficient in each of the opioid receptors. An up-regulation of ORL1 expression was observed across all brain regions in delta-knockouts with cortical regions typically showing a 15-30% increase in binding that was most marked in heterozygous mice.
View Article and Find Full Text PDFDespite ample pharmacological evidence for the existence of multiple mu-, delta- and kappa-opioid receptor subtypes, only three genes encoding mu-(MOR), delta-(DOR) and kappa-(KOR) opioid receptor have been cloned. The KOR gene encodes kappa(1)-sites, which specifically bind arylacetamide compounds, and the possible existence of kappa-opioid receptor subtypes derived from another kappa-opioid-receptor gene, yet to be characterized, remains a very contentious issue. kappa(2)-Opioid receptors are described as binding sites typically labelled by the non-selective benzomorphan ligand [3H]bremazocine in the presence of mu-, delta- and kappa(1)-opioid receptor blocking ligands.
View Article and Find Full Text PDFMice deficient in the kappa-opioid receptor (KOR) gene have recently been developed by the technique of homologous recombination and shown to lack behavioural responses to the selective kappa1-receptor agonist U-50,488H. We have carried out quantitative autoradiography of mu-, delta- and kappa1 receptors in the brains of wild-type (+/+), heterozygous (+/-) and homozygous (-/-) KOR knockout mice to determine if there is any compensatory expression of mu- and delta-receptor subtypes in mutant animals. Adjacent coronal sections were cut from the brains of +/+, +/- and -/- mice for the determination of binding of [3H]CI-977, [3H]DAMGO (D-Ala2-MePhe4-Gly-ol5 enkephalin) or [3H]DELT-I (D-Ala2 deltorphin I) to kappa1-, mu- and delta-receptors, respectively.
View Article and Find Full Text PDF***micro***-, delta- and kappa-opioid receptors are widely expressed in the central nervous system where they mediate the strong analgesic and mood-altering actions of opioids, and modulate numerous endogenous functions. To investigate the contribution of the kappa-opioid receptor (KOR) to opioid function in vivo, we have generated KOR-deficient mice by gene targeting. We show that absence of KOR does not modify expression of the other components of the opioid system, and behavioural tests indicate that spontaneous activity is not altered in mutant mice.
View Article and Find Full Text PDFMice lacking the mu-opioid receptor (MOR) gene have been successfully developed by homologous recombination and these animals show complete loss of analgesic responses to morphine as well as loss of place-preference activity and physical dependence on this opioid. We report here quantitative autoradiographic mapping of opioid receptor subtypes in the brains of wild-type, heterozygous and homozygous mutant mice to demonstrate the deletion of the MOR gene, to investigate the possible existence of any mu-receptor subtypes derived from a different gene and to determine any modification in the expression of other opioid receptors. Mu-, delta-, kappa1- and total kappa-receptors, in adjacent coronal sections in fore- and midbrain and in sagittal sections, were labelled with [3H]DAMGO (D-Ala2-MePhe4-Gly-ol5 enkephalin), [3H]DELTI (D-Ala2 deltorphinI), [3H]CI-977 and [3H]bremazocine (in the presence of DAMGO and DPDPE) respectively.
View Article and Find Full Text PDFDespite tremendous efforts in the search for safe, efficacious and non-addictive opioids for pain treatment, morphine remains the most valuable painkiller in contemporary medicine. Opioids exert their pharmacological actions through three opioid-receptor classes, mu, delta and kappa, whose genes have been cloned. Genetic approaches are now available to delineate the contribution of each receptor in opioid function in vivo.
View Article and Find Full Text PDF