Publications by authors named "Sloun R"

Background And Objective: The integration of ultrafast Doppler imaging with singular value decomposition clutter filtering has demonstrated notable enhancements in flow measurement and Doppler sensitivity, surpassing conventional Doppler techniques. However, in the context of transthoracic coronary flow imaging, additional challenges arise due to factors such as the utilization of unfocused diverging waves, constraints in spatial and temporal resolution for achieving deep penetration, and rapid tissue motion. These challenges pose difficulties for ultrafast Doppler imaging and singular value decomposition in determining optimal tissue-blood (TB) and blood-noise (BN) thresholds, thereby limiting their ability to deliver high-contrast Doppler images.

View Article and Find Full Text PDF

The human brain undergoes major developmental changes during pregnancy. Three-dimensional (3D) ultrasound images allow for the opportunity to investigate typical prenatal brain development on a large scale. Transabdominal ultrasound can be challenging due to the small fetal brain and its movement, as well as multiple sweeps that may not yield high-quality images, especially when brain structures are unclear.

View Article and Find Full Text PDF
Active inference and deep generative modeling for cognitive ultrasound.

IEEE Trans Ultrason Ferroelectr Freq Control

September 2024

Article Synopsis
  • Ultrasound technology has become portable and affordable, similar to stethoscopes, but its diagnostic quality still relies heavily on the operator's skill and the patient's condition.* -
  • The authors propose redesigning ultrasound systems as interactive "agents" that can autonomously adjust their imaging techniques to enhance the quality of diagnostic information based on real-time feedback from the environment.* -
  • By using advanced deep generative models and Bayesian inference, these systems can actively reduce uncertainty and improve diagnostic accuracy, with examples demonstrating cognitive ultrasound systems that adapt their imaging strategies effectively.*
View Article and Find Full Text PDF

Overnight sleep staging is an important part of the diagnosis of various sleep disorders. Polysomnography is the gold standard for sleep staging, but less-obtrusive sensing modalities are of emerging interest. Here, we developed and validated an algorithm to perform "proxy" sleep staging using cardiac and respiratory signals derived from a chest-worn accelerometer.

View Article and Find Full Text PDF

Data uncertainties, such as sensor noise, occlusions or limitations in the acquisition method can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. In image segmentation, latent density models can be utilized to address this problem.

View Article and Find Full Text PDF

Sleep staging based on full polysomnography is the gold standard in the diagnosis of many sleep disorders. It is however costly, complex, and obtrusive due to the use of multiple electrodes. Automatic sleep staging based on single-channel electro-oculography (EOG) is a promising alternative, requiring fewer electrodes which could be self-applied below the hairline.

View Article and Find Full Text PDF

Purpose: Use a conference challenge format to compare machine learning-based gamma-aminobutyric acid (GABA)-edited magnetic resonance spectroscopy (MRS) reconstruction models using one-quarter of the transients typically acquired during a complete scan.

Methods: There were three tracks: Track 1: simulated data, Track 2: identical acquisition parameters with in vivo data, and Track 3: different acquisition parameters with in vivo data. The mean squared error, signal-to-noise ratio, linewidth, and a proposed shape score metric were used to quantify model performance.

View Article and Find Full Text PDF

With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR).

View Article and Find Full Text PDF

Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker.

View Article and Find Full Text PDF

. Unobtrusive long-term monitoring of cardiac parameters is important in a wide variety of clinical applications, such as the assesment of acute illness severity and unobtrusive sleep monitoring. Here we determined the accuracy and robustness of heartbeat detection by an accelerometer worn on the chest.

View Article and Find Full Text PDF

Objective: To assess whether artificial intelligence, inspired by clinical decision-making procedures in delivery rooms, can correctly interpret cardiotocographic tracings and distinguish between normal and pathological events.

Study Design: A method based on artificial intelligence was developed to determine whether a cardiotocogram shows a normal response of the fetal heart rate to uterine activity (UA). For a given fetus and given the UA and previous FHR, the method predicts a fetal heart rate response, under the assumption that the fetus is still in good condition and based on how that specific fetus has responded so far.

View Article and Find Full Text PDF

Echocardiography has been a prominent tool for the diagnosis of cardiac disease. However, these diagnoses can be heavily impeded by poor image quality. Acoustic clutter emerges due to multipath reflections imposed by layers of skin, subcutaneous fat, and intercostal muscle between the transducer and heart.

View Article and Find Full Text PDF

Non-rapid eye movement parasomnia disorders, also called disorders of arousal, are characterized by abnormal nocturnal behaviours, such as confusional arousals or sleep walking. Their pathophysiology is not yet fully understood, and objective diagnostic criteria are lacking. It is known, however, that behavioural episodes occur mostly in the beginning of the night, after an increase in slow-wave activity during slow-wave sleep.

View Article and Find Full Text PDF

Background: Point-of-care lung ultrasound (LUS) allows real-time patient scanning to help diagnose pleural effusion (PE) and plan further investigation and treatment. LUS typically requires training and experience from the clinician to accurately interpret the images. To address this limitation, we previously demonstrated a deep-learning model capable of detecting the presence of PE on LUS at an accuracy greater than 90%, when compared to an experienced LUS operator.

View Article and Find Full Text PDF

Sleep staging is the process by which an overnight polysomnographic measurement is segmented into epochs of 30 seconds, each of which is annotated as belonging to one of five discrete sleep stages. The resulting scoring is graphically depicted as a hypnogram, and several overnight sleep statistics are derived, such as total sleep time and sleep onset latency. Gold standard sleep staging as performed by human technicians is time-consuming, costly, and comes with imperfect inter-scorer agreement, which also results in inter-scorer disagreement about the overnight statistics.

View Article and Find Full Text PDF

Deep learning (DL) models have shown performance benefits across many applications, from classification to image-to-image translation. However, low interpretability often leads to unexpected model behavior once deployed in the real world. Usually, this unexpected behavior is because the training data domain does not reflect the deployment data domain.

View Article and Find Full Text PDF

Objectives: Two-dimensional speckle tracking echocardiography has been considered an angle-independent modality. However, current literature is limited and inconclusive on the actual impact of angle of insonation on strain values. Therefore, the primary objective of this study was to assess the impact of angles of insonation on the estimation of fetal left ventricular and right ventricular global longitudinal strain.

View Article and Find Full Text PDF

This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field.

View Article and Find Full Text PDF

Objective: Tissue mechanical properties are valuable markers for tissue characterization, aiding in the detection and staging of pathologies. Shear wave elastography (SWE) offers a quantitative assessment of tissue mechanical characteristics based on the SW propagation profile, which is derived from the SW particle motion. Improving the signal-to-noise ratio (SNR) of the SW particle motion would directly enhance the accuracy of the material property estimates such as elasticity or viscosity.

View Article and Find Full Text PDF

Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions. Conventionally, reconstruction algorithms have been derived from physical principles. These algorithms rely on assumptions and approximations of the underlying measurement model, limiting image quality in settings where these assumptions break down.

View Article and Find Full Text PDF

The recently-introduced hypnodensity graph provides a probability distribution over sleep stages per data window (i.e. an epoch).

View Article and Find Full Text PDF

In recent years, visual analytics (VA) has shown promise in alleviating the challenges of interpreting black-box deep learning (DL) models. While the focus of VA for explainable DL has been mainly on classification problems, DL is gaining popularity in high-dimensional-to-high-dimensional (H-H) problems such as image-to-image translation. In contrast to classification, H-H problems have no explicit instance groups or classes to study.

View Article and Find Full Text PDF

Our automated deep learning-based approach identifies consolidation/collapse in LUS images to aid in the identification of late stages of COVID-19 induced pneumonia, where consolidation/collapse is one of the possible associated pathologies. A common challenge in training such models is that annotating each frame of an ultrasound video requires high labelling effort. This effort in practice becomes prohibitive for large ultrasound datasets.

View Article and Find Full Text PDF

There is an increased desire for miniature ultrasound probes with small apertures to provide volumetric images at high frame rates for in-body applications. Satisfying these increased requirements makes simultaneous achievement of a good lateral resolution a challenge. As micro-beamforming is often employed to reduce data rate and cable count to acceptable levels, receive processing methods that try to improve spatial resolution will have to compensate the introduced reduction in focusing.

View Article and Find Full Text PDF

Ballistography(BSG) is a non-intrusive and low- cost alternative to electrocardiography (ECG) for heart rate (HR) monitoring in infants. Due to the inter-patient variance and susceptibility to noise, heartbeat detection in the BSG waveform remains a challenge. The aim of this study was to estimate HR from a bed-based pressure mat BSG signal using a deep learning approach.

View Article and Find Full Text PDF