Voltage-gated Na channels are crucial to action potential propagation in excitable tissues. Because of the high amplitude and rapid activation of the Na current, voltage-clamp measurements are very challenging and are usually performed at room temperature. In this study, we measured Na current voltage-dependence in stem cell-derived cardiomyocytes at physiological temperature.
View Article and Find Full Text PDFMyocardial remodeling is an inevitable risk factor for cardiac arrhythmias and can potentially be corrected with cell therapy. Although the generation of cardiac cells ex vivo is possible, specific approaches to cell replacement therapy remain unclear. On the one hand, adhesive myocyte cells must be viable and conjugated with the electromechanical syncytium of the recipient tissue, which is unattainable without an external scaffold substrate.
View Article and Find Full Text PDFThe development of new approaches to suppressing cardiac arrhythmias requires a deep understanding of spiral wave dynamics. The study of spiral waves is possible in model systems, for example, in a monolayer of cardiomyocytes. A promising way to control cardiac excitability in vitro is the noninvasive photocontrol of cell excitability mediated by light-sensitive azobenzene derivatives, such as azobenzene trimethylammonium bromide (AzoTAB).
View Article and Find Full Text PDFMicromachines (Basel)
December 2022
Induced pluripotent stem cells (iPSCs) constitute a potential source of patient-specific human cardiomyocytes for a cardiac cell replacement therapy via intramyocardial injections, providing a major benefit over other cell sources in terms of immune rejection. However, intramyocardial injection of the cardiomyocytes has substantial challenges related to cell survival and electrophysiological coupling with recipient tissue. Current methods of manipulating cell suspensions do not allow one to control the processes of adhesion of injected cells to the tissue and electrophysiological coupling with surrounding cells.
View Article and Find Full Text PDFBotulinum toxin A is a well-known neurotransmitter inhibitor with a wide range of applications in modern medicine. Recently, botulinum toxin A preparations have been used in clinical trials to suppress cardiac arrhythmias, especially in the postoperative period. Its antiarrhythmic action is associated with inhibition of the nervous system of the heart, but its direct effect on heart tissue remains unclear.
View Article and Find Full Text PDFCyclophosphamide (CP) is an anticancer drug, an alkylating agent. Cardiotoxicity of CP is associated with one of its metabolites, acrolein, and clinical cardiotoxicity manifestations are described for cases of taking CP in high doses. Nevertheless, modern arrhythmogenicity prediction assays in vitro include evaluation of beat rhythm and rate as well as suppression of cardiac late markers after acute exposure to CP, but not its metabolites.
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) serve as an indispensable platform for the study of human cardiovascular disease is human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). While the possibility of reproducing rare pathologies, patient-specific selection of drugs, and other issues concerning single cardiomyocytes have been well studied, little attention has been paid to the properties of the whole syncytium of CMs, in which both the functionality of individual cells and the distribution of electrophysiological connections between them are essential. The aim of this work is to directly study the ability of hiPSC-CMs to form a functional syncytium that can stably conduct an excitation wave.
View Article and Find Full Text PDFGeneration of patient-specific induced pluripotent stem cells (iPSCs) and their subsequent differentiation into cardiomyocytes opened new opportunities for studying pathogenesis of inherited cardiovascular diseases. One of these diseases is hypertrophic cardiomyopathy (HCM) for which no efficient therapy methods have been developed so far. In this study, the approach based on patient-specific iPSCs was applied to create a model of the disease.
View Article and Find Full Text PDFErythromycin is an antibiotic that prolongs the QT-interval and causes Torsade de Pointes (TdP) by blocking the rapid delayed rectifying potassium current (I) without affecting either the slow delayed rectifying potassium current (I) or inward rectifying potassium current (I). Erythromycin exerts this effect in the range of 1.5-100 μM.
View Article and Find Full Text PDFIn vitro screening for potential side effects of drugs on human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is a cutting-edge technology in pharmaceutical industry. International groups are currently considering using iPSC-CM as a part of comprehensive battery for an accurate and complex mechanistic-based assessment of the proarrhythmic potential of drugs. Despite iPSC-CMs expression and phenotype differences from mature adult CMs screening for drug-induced prolonged QT interval is now routinely carried and also recommended by ICH.
View Article and Find Full Text PDF