Publications by authors named "Slootweg E"

Three new genera, six new species, three combinations, six epitypes, and 25 interesting new host and / or geographical records are introduced in this study. New genera: (based on ), and (based on ). New species: (from cooling pad water, USA, (on dead wood of sp.

View Article and Find Full Text PDF

To establish persistent infections in host plants, herbivorous invaders, such as root-knot nematodes, must rely on effectors for suppressing damage-induced jasmonate-dependent host defenses. However, at present, the effector mechanisms targeting the biosynthesis of biologically active jasmonates to avoid adverse host responses are unknown. Using yeast two-hybrid, in planta co-immunoprecipitation, and mutant analyses, we identified 12-oxophytodienoate reductase 2 (OPR2) as an important host target of the stylet-secreted effector MiMSP32 of the root-knot nematode Meloidogyne incognita.

View Article and Find Full Text PDF

The activity of intracellular plant nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors is fine-tuned by interactions between the receptors and their partners. Identifying NB-LRR interacting proteins is therefore crucial to advance our understanding of how these receptors function. A co-immunoprecipitation/mass spectrometry screening was performed in Nicotiana benthamiana to identify host proteins associated with the resistance protein Gpa2, a CC-NB-LRR immune receptor conferring resistance against the potato cyst nematode Globodera pallida.

View Article and Find Full Text PDF

Plant NLR proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming. Some NLRs have been shown to act in the nucleus and interact with transcription factors.

View Article and Find Full Text PDF

Plant-parasitic nematodes secrete effectors that manipulate plant cell morphology and physiology to achieve host invasion and establish permanent feeding sites. Effectors from the highly expanded SPRYSEC (SPRY domain with a signal peptide for secretion) family in potato cyst nematodes have been implicated in activation and suppression of plant immunity, but the mechanisms underlying these activities remain largely unexplored. To study the host mechanisms used by SPRYSEC effectors, we identified plant targets of GpRbp-1 from the potato cyst nematode Globodera pallida.

View Article and Find Full Text PDF

The intracellular immune receptor Rx1 of potato (), which confers effector-triggered immunity to , consists of a central nucleotide-binding domain (NB-ARC) flanked by a carboxyl-terminal leucine-rich repeat (LRR) domain and an amino-terminal coiled-coil (CC) domain. Rx1 activity is strictly regulated by interdomain interactions between the NB-ARC and LRR, but the contribution of the CC domain in regulating Rx1 activity or immune signaling is not fully understood. Therefore, we used a structure-informed approach to investigate the role of the CC domain in Rx1 functionality.

View Article and Find Full Text PDF

Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming, and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further able to bind and distort double-stranded DNA.

View Article and Find Full Text PDF

Plants have evolved a limited repertoire of NB-LRR disease resistance () genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR genes to switch resistance specificities between phylogenetically unrelated pathogens.

View Article and Find Full Text PDF

To respond to foreign invaders, plants have evolved a cell autonomous multilayered immune system consisting of extra- and intracellular immune receptors. Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) mediate recognition of pathogen effectors inside the cell and trigger a host specific defense response, often involving controlled cell death. NLRs consist of a central nucleotide-binding domain, which is flanked by an N-terminal CC or TIR domain and a C-terminal leucine-rich repeat domain (LRR).

View Article and Find Full Text PDF

Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins.

View Article and Find Full Text PDF

Genes encoding plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins confer dominant resistance to diverse pathogens. The wild-type potato NB-LRR protein Rx confers resistance against a single strain of potato virus X (PVX), whereas LRR mutants protect against both a second PVX strain and the distantly related poplar mosaic virus (PopMV). In one of the Rx mutants there was a cost to the broad-spectrum resistance because the response to PopMV was transformed from a mild disease on plants carrying wild-type Rx to a trailing necrosis that killed the plant.

View Article and Find Full Text PDF

Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively.

View Article and Find Full Text PDF

The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions.

View Article and Find Full Text PDF

Plant resistance (R) proteins mediate race-specific immunity and initiate host defenses that are often accompanied by a localized cell-death response. Most R proteins belong to the nucleotide binding-leucine-rich repeat (NB-LRR) protein family, as they carry a central NB-ARC domain fused to an LRR domain. The coiled-coil (CC) domain at the N terminus of some solanaceous NB-LRR proteins is extended with a solanaceae domain (SD).

View Article and Find Full Text PDF

The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus.

View Article and Find Full Text PDF

The potato (Solanum tuberosum) nucleotide binding-leucine-rich repeat immune receptor Rx confers resistance to Potato virus X (PVX) and requires Ran GTPase-activating protein 2 (RanGAP2) for effective immune signaling. Although Rx does not contain a discernible nuclear localization signal, the protein localizes to both the cytoplasm and nucleus in Nicotiana benthamiana. Transient coexpression of Rx and cytoplasmically localized RanGAP2 sequesters Rx in the cytoplasm.

View Article and Find Full Text PDF

Lytic phages form a powerful platform for the display of large cDNA libraries and offer the possibility to screen for interactions with almost any substrate. To visualize these interactions directly by fluorescence microscopy, we constructed fluorescent T7 phages by exploiting the flexibility of phages to incorporate modified versions of its capsid protein. By applying translational frameshift sequences, helper plasmids were constructed that expressed a fixed ratio of both wild-type capsid protein (gp10) and capsid protein fused to enhanced yellow fluorescent protein (EYFP).

View Article and Find Full Text PDF

In vivo imaging of endogenously expressed mammalian proteases has been useful for the detection of cancer and preneoplastic lesions, for staging of inflammatory and autoimmune diseases, and for testing the efficacy of novel protease inhibitors. Here we report on the synthesis of a novel imaging probe that is specific for HIV-1 protease (PR). The probe was designed to be biocompatible, i.

View Article and Find Full Text PDF